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What are the contents of working memory? In both
behavioral and neural computational models, a working
memory representation is typically described by a single
number, namely, a point estimate of a stimulus. Here,
we asked if people also maintain the uncertainty
associated with a memory and if people use this
uncertainty in subsequent decisions. We collected data
in a two-condition orientation change detection task;
while both conditions measured whether people used
memory uncertainty, only one required maintaining it.
For each condition, we compared an optimal Bayesian
observer model, in which the observer uses an accurate
representation of uncertainty in their decision, to one in
which the observer does not. We find that this “Use
Uncertainty” model fits better for all participants in both
conditions. In the first condition, this result suggests
that people use uncertainty optimally in a working
memory task when that uncertainty information is
available at the time of decision, confirming earlier
results. Critically, the results of the second condition
suggest that this uncertainty information was
maintained in working memory. We test model variants
and find that our conclusions do not depend on our
assumptions about the observer’s encoding process,
inference process, or decision rule. Our results provide
evidence that people have uncertainty that reflects their
memory precision on an item-specific level, maintain
this information over a working memory delay, and use
it implicitly in a way consistent with an optimal
observer. These results challenge existing computational
models of working memory to update their frameworks
to represent uncertainty.

Introduction

Visual working memory, the process involved in
actively maintaining visual information over a short
period, is essential for numerous everyday behaviors
as “simple” as integrating visual information across
saccades and as “complex” as reading comprehension,
problem solving, and decision making (Baddeley &
Hitch, 1974; Baddeley, 2003; Fukuda et al., 2010;
Conway et al., 2003; Just & Carpenter, 1992). As
important as it is, visual working memory is also a
notoriously limited process, resulting in an imperfect
and incomplete picture of the world it aims to represent.

Both behavioral (e.g., Zhang & Luck, 2008; Bays
& Husain, 2008; van den Berg et al., 2012; Fougnie
et al., 2012) and neural (e.g., Ermentrout, 1998; Wang,
2001; Compte, 2006) models of visual working memory
typically represent people’s memory as a single number,
a noisy estimate of the value of the stimulus. For
example, someone may remember a 34◦ oriented
line as 37◦. It is, however, important in many visual
working memory decisions to represent more than just
a point estimate of the remembered stimulus, but the
uncertainty as well. Uncertainty is technically defined
as the width of a belief distribution over a stimulus
but intuitively is a subjective measure representing
how unsure an observer is about the stimulus. This
is different from memory precision, which is objective
and represents how precisely an observer actually
remembers the stimulus. An ideal observer’s uncertainty
will reflect the precision with which they remembered
an item, such that they are less uncertain for more
precise memories. They will use this knowledge by
weighing low-uncertainty information more heavily
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than high-uncertainty information. In a variety of
domains, this strategy would increase performance and
thus should be used. For example, high uncertainty
over the memory of the location of a coffee cup may
result in someone looking at it before reaching for it.
High uncertainty over whether a friend changed their
appearance may result in someone being less likely to
comment on it.

Does uncertainty get taken into account in working
memory–based decisions? An intuitive first place to
look is the literature on working memory confidence,
since confidence can be thought of as a readout of
uncertainty. Experimenters have probed memory
confidence by asking people to provide a rating
(Rademaker et al., 2012; Vandenbroucke et al., 2014;
Samaha & Postle, 2017), choose the best remembered
item (Fougnie et al., 2012; Suchow et al., 2017), or make
a memory-based bet (Yoo et al., 2018; Honig et al.,
2020). These studies have demonstrated that people
have higher working memory confidence on trials
that are remembered more accurately (but see Sahar
et al., 2020; Bona et al., 2013; Bona & Silvanto, 2014;
Vlassova et al., 2014; Maniscalco & Lau, 2015; Adam
& Vogel, 2017; Samaha et al., 2016, for conflicting
results), and a computational model in which memory
judgments and confidence ratings are derived from the
same underlying memory precision can quantitatively
account for these joint data (van den Berg et al., 2017).

All these studies ask the participant to consciously
access the quality of their memory. However, in
naturalistic settings, people are typically not directly
interrogated about their uncertainty but use it implicitly
in order to benefit later decisions. For example,
looking before reaching for one’s coffee cup and
commenting on a friend’s appearance are decisions that
presumably use uncertainty without conscious report.
In this study, we take inspiration from perceptual
decision-making studies, which have demonstrated that
people implicitly incorporate uncertainty to increase
behavioral performance in a variety of decision-making
paradigms (e.g., van Beers et al., 1999; Ernst & Banks,
2002; Alais & Burr, 2004; Körding & Wolpert, 2004;
Knill & Pouget, 2004; Ma et al., 2011; Jazayeri &
Shadlen, 2010; Stocker & Simoncelli, 2006).

There is already some evidence that people use
uncertainty implicitly in working memory–based
decisions. Keshvari and colleagues had humans
complete a four-item orientation change detection
task (Keshvari et al., 2012); Devkar and colleagues
had humans and monkeys complete a three-item
orientation change localization task (Devkar et al.,
2017). Stimuli in both studies were ellipses, which were
independently assigned to be longer and narrower,
providing “high-reliability” orientation information,
or shorter and wider, providing “low-reliability”
orientation information. The reliability of ellipses
affected the precision with which they were encoded,

and thus should have affected the memory uncertainty
associated with each item. To maximize performance
in both tasks, participants’ uncertainty would need to
reflect this variability in item-specific precision. Both
studies found that a computational model that assumes
participants use item-specific uncertainty accounted
better for people’s choices than alternative models.

Crucially, while these two studies provide evidence
that people can implicitly use uncertainty, some
experimental design choices do not allow us to conclude
that people are actually maintaining uncertainty
per se. First, participants in the study by Devkar
and colleagues received trial-to-trial feedback on
the correctness of their response. It is thus possible
that participants simply learned a stimulus–response
mapping (Maloney & Mamassian, 2009) rather than
performing Bayesian inference or other forms of
probabilistic computation (i.e., still using uncertainty
in their decision; Ma, 2010). Second, precision in
both studies was experimentally manipulated through
ellipse reliability, which was held constant through
and available after the working memory delay. Thus,
participants could have used this ellipse reliability as
a proxy for uncertainty (Barthelmé & Mamassian,
2010), rather than maintaining this information over
the working memory delay.

Thus, the goal of this study was to investigate the
conjunction of uncertainty maintenance and implicit
use in a working memory task. To reach this goal, we
collected data in a two-condition orientation change
detection task and developed computational models to
test different hypotheses about uncertainty. Intuitively,
uncertainty results in a criterion shift, such that a
stimulus with higher uncertainty associated with it
would require a larger physical change before an
observer would report that it changed. In the first
condition, we established that people use uncertainty if
a proxy to it is provided to them at the time of decision,
replicating the results from Keshvari and others (2012).
In the second condition, we asked if people still use
uncertainty if this proxy is not provided at the time
of decision. In other words, we asked if uncertainty is
being maintained in working memory.

Experimental methods

Participants

Thirteen participants (11 female; mean ageM = 21.1
years, SD = 2.5) completed both conditions. All
participants had normal or corrected-to-normal vision.
Participants were naive to the study’s hypotheses and
were paid $12/hour and a $24 completion bonus.
We obtained informed, written consent from all
participants. The study was in accordance with the
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Declaration of Helsinki and was approved by the
Institutional Review Board of New York University
(IRB-FY2019-2490). Seven other participants were
excluded because they did not meet performance
criteria (explained in the Cross-Session Procedure
section).

Stimuli

Stimuli were four, light-gray, oriented ellipses on
a medium-gray background. Each ellipse could be
long or short, to provide respectively higher or lower
reliability information regarding the orientation of
the ellipses. All ellipses had an area of 1.19 degrees
of visual angle (dva). The high-reliability ellipse had
an ellipse eccentricity of 0.9, such that the major
and minor axes were 1.02 and 0.37 dva, respectively.
The low-reliability ellipse eccentricity was determined
separately for each participant to equate performance
(details in Procedure).

On every trial, a stimulus display consisted of four
ellipses. The probability of each ellipse being high
reliability was 0.5, independent of the reliability of the
other ellipses. The location of the first ellipse was drawn
from a uniform distribution between polar angles 0◦
and 90◦. Each ellipse after that was placed such that all
ellipses were 90◦ apart on an imaginary annulus that
was 7 dva away from fixation. Afterward, the x- and
y- locations of the ellipses were independently jittered
−0.3 to 0.3 dva. The ellipse stimuli are consistent with
those in Keshavri et al. (2012) study. In one condition,
there were additionally oriented line stimuli, which were
set to have approximately the same area as the ellipses.
Stimuli were displayed on a 23-in. LED monitor with a
refresh rate of 60 Hz and a resolution of 1,920 × 1,080
pixels.

Procedure

Trial procedure
Ellipse condition: A trial began with a fixation cross
presented for 1,000 ms. Four ellipses were presented for
100 ms, followed by a 1000-ms delay, then by another
four ellipses for 100 ms. On half of the trials, all ellipses
in the second stimulus presentation were identical to the
ellipses in the first stimulus presentation. On the other
half of the trials, one ellipse changed in orientation.
This change was drawn from a uniform distribution,
so change of any magnitude had equal probability.
Each ellipse had an equal probability of containing the
change. Change and no-change trials were randomly
interleaved throughout the experiment. The participant
indicated with a keyboard button press whether they
believed there was an orientation change between
the two displays. This condition is identical to the
experiment done by Keshvari et al. (2012).

100 ms1,000 ms
Until

response1,000 ms

100 ms

Figure 1. Trial sequence. Participants fixated on a cross, saw
four ellipses (here showing one high-reliability ellipse and three
low-reliability ellipses), maintained them over a delay, saw four
stimuli again, and reported whether they believed there was an
orientation change or not. In the Ellipse condition, ellipses in
the second presentation were of the same reliability as in the
first. In the Line condition, lines replaced ellipses in the second
stimulus presentation, to avoid providing cues to the precision
with which the first items were maintained.

Line condition: In the Line condition, the stimuli in the
second presentation were oriented lines rather than
ellipses. The task was otherwise identical. An example
of a trial in the Ellipse and Line conditions is illustrated
in Figure 1.

Cross-session procedure
Participants completed both conditions over six 1-hr

sessions. They began their first session with a Practice
block, designed to ease the participants into the task.
They then completed 2,000 trials of each condition,
preceded by a Threshold block to set the “short” ellipse
reliability for each condition. Participants completed
all of one condition before completing the other, and
the order was counterbalanced across participants.
Participants were verbally informed that each trial had
a 0.5 probability of a change occurring, a change (if
present) would occur in exactly one ellipse, and the
change could be “of any magnitude; big changes are
as possible as small changes.” Participants were also
verbally informed that some ellipses would be more
elongated than others, that this may affect performance,
and that half of the experiment would involve the
stimuli changing from ellipses to lines. They were
informed that their task did not change; the goal
was always to indicate whether there was a change in
orientation.

The Practice block consisted of 256 trials and was
designed to ease naive participants into the speed of
the task. The stimulus presentation time decreased
throughout the course of the Practice block, from
333 ms to 100 ms, in 33-ms increments every 32 trials.
Unlike the actual task, the ellipse eccentricities (i.e.,
reliabilities) of all ellipses within each trial were the
same but changed across trials. The stimuli in the
second stimulus presentation corresponded to the
condition that the participant completed first. For
example, the stimuli in the second presentation were
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Figure 2. Behavioral data. Illustration of behavioral data for (A) Ellipse condition and (B) Line condition. For each condition, the left
plots illustrate proportion report “change” as a function of magnitude of change. Data are binned by quantile, and different-colored
lines illustrate data from trials with different numbers of high-reliability ellipses presented on the first display. The right plots illustrate
the proportion report “change” as a function of number of high-reliability ellipses, conditioned on whether there was no actual
change (false alarm [FA]: yellow), a change in a low-reliability ellipse (Hlow: blue), a change in a high-reliability ellipse (Hhigh: green), or
a change in any ellipse (hit [H]: purple). Color legends are displayed above the plots. Note that the aggregated hits are a weighted
combination of the reliability-conditioned hits. The “Z” shape formed by the hit lines is an instance of Simpson’s paradox.

lines if the participant completed the Line condition
first.

The Threshold block consisted of 400 trials and was
used to set the ellipse eccentricity of the low-reliability
ellipse in each condition. Like the Practice block, the
ellipse eccentricities of all ellipses on each trial were the
same but changed on a trial-to-trial basis. The second
stimulus presentation set included either ellipses or
lines, corresponding to which condition the threshold
was being set for. A cumulative normal psychometric
function was fit to the accuracy as a function of ellipse
eccentricity, and the low-reliability ellipse eccentricity
was set as the value that corresponded to a predicted
65% accuracy. If the ceiling performance of the
participant was estimated to be less than 75%, the
Threshold block was repeated. If the psychometric
function could not estimate an ellipse reliability for
which performance would hit 65% after the second
try, the participant was excluded from the experiment.
Seven participants were excluded based on these
criteria.

Experimental results

The goal of our study was to investigate whether
people maintained and used uncertainty implicitly
in a working memory–based decision. To do this, we
conducted a two-condition orientation change detection
task. People could use memory uncertainty to maximize
performance in both conditions, but only the Line

condition required maintenance of that uncertainty. We
conducted five repeated-measures analyses of variance
(ANOVAs) to test whether condition (Ellipse, Line),
the number of high-reliability ellipses displayed (Nhigh:
0, 1, 2, 3, 4), or their interaction significantly affected
the following values: proportion report “change,” false
alarm rate, hit rate (for all items), hit rate (when the
changed item was a low-reliability ellipse), and hit rate
(when the changed item was a high-reliability ellipse).
These values are visualized in Figure 2, and the statistics
are reported in Table 1.

There was a statistically significant interaction
between Nhigh and condition on proportion report
“change.” In only the Ellipse condition, the proportion
report “change” was modulated by the number of
high-reliability ellipses (left plots of Figures 2A, B).
There were significantly more false alarms in the Line
condition (M = 0.14, SEM = 0.03) than in the Ellipse
condition (M = 0.09, SEM = 0.02; yellow lines in
right plots of Figures 2A, B). Perhaps people confused
changes in stimuli as changes in orientation.

Both reliability-conditioned hit rates (blue and
green lines in right plots of Figures 2A, B) as well
as false alarm rates decreased with increasing Nhigh.
Additionally, participants had significantly lower
high-reliability hits in the Line condition and the Ellipse
condition. These results could be potentially explained
by participants using uncertainty information. As
the total number of high-reliability ellipses, Nhigh,
increases, the number of high-reliability ellipses that
do not change also increases. If people weigh high-
reliability information more heavily than low-reliability
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Dependent variable Factor Statistics p ε η2

Proportion report “change” Nhigh F (1.38, 16.50) = 3.37 0.07 0.34 0.03
Condition F (1, 12) = 1.33 0.27 – 0.01
Nhigh x Condition F (2.12, 25.38) = 6.32 0.005 0.52 0.04

False alarm rate Nhigh F (1.93, 23.17) = 18.21 2.07 × 10−5 0.48 0.14
Condition F (1, 12) = 6.50 0.03 – 0.08
Nhigh x Condition F (1.95, 23.36) = 4.94 0.02 0.49 0.05

Hit rate (all) Nhigh F (1.36, 16.30) = 5.29 0.03 0.34 0.04
Condition F (1, 12) = 2.47 0.14 – 0.03
Nhigh x Condition F (2.04, 24.48) = 5.33 0.01 0.51 0.03

Hit rate (low-reliability) Nhigh F (1.76, 21.07) = 23.26 8.43 × 10−6 0.59 0.08
Condition F (1, 12) = 0.29 0.60 – 0.005
Nhigh x Condition F (2.01, 24.15) = 0.37 0.69 0.67 0.002

Hit rate (high-reliability) Nhigh F (1.98, 23.79) = 35.44 7.72 × 10−08 0.66 0.13
Condition F (1, 12) = 14.66 0.002 – 0.17
Nhigh x Condition F (2.15, 25.80) = 0.75 0.49 0.72 0.003

Table 1. Results of two-way repeated-measures ANOVA. Independent variables are Nhigh (0, 1, 2, 3, 4) and condition (Ellipse, Line), and
dependent variables are displayed as the first column. Statistics of significant effects are bolded. For all ANOVAs, we report the
Greenhouse–Geisser corrected results and ε (sphericity correction) when appropriate.

information, then as the amount of high-reliability
“no-change” information increases, the proportion of
participants who respond “change” should decrease.
This would result in a decrease in reliability-conditioned
Hit rates and false alarm rates with increasing Nhigh.

There is an interesting reverse in the qualitative trend
when looking at all hit rates across all trials: Hit rate
increases as a function of Nhigh. This Simpson’s paradox
is a result of weighted averaging and the performance
difference between the reliability-conditioned hit rates.
As the number of high-reliability ellipses in a display
increases, so does the probability of a change occurring
in a high-reliability ellipse. Thus, the total hit rates
for higher Nhighs contain more high-reliability hits
than low-reliability hits, driving this value upward.
Similarly, the trials to compute hit rates for lower
Nhighs predominantly contain changes in low-reliability
ellipses, thus driving the average downward. There was
also a significant effect of condition; hit rates were
higher in the Ellipse condition.

These statistics show that differences between factors
and conditions exist but are dissatisfying because they
do not offer explanations of what these differences
mean. In fact, the intuitions presented in this section
are largely driven by knowledge about how noise affects
decisions, knowledge acquired from computational
models like signal detection theory (e.g., Green &
Swets, 1966) and Bayesian decision theory. Thus,
in this article, we directly test our intuitions about
the underlying working memory processes through
computational modeling. Computational modeling
allows us to make explicit assumptions and precise

quantitative predictions, which provide committal,
falsifiable explanations of the processes involved.

Modeling methods

To test whether people are maintaining and
using uncertainty when making their change
detection decision, we use Bayesian observer models
(Ma, 2019). Bayesian models provide a normative,
flexible, and interpretable framework to study the
working memory process. These models are particularly
useful in cases where the observer is trying to make
a decision without full knowledge of task-relevant
information. In working memory, people do not have
full knowledge because information is not remembered
perfectly. While Bayesian decision theory describes
how an observer should behave in order to maximize
performance, different components of the model
can be easily substituted with incorrect beliefs or
suboptimal use of information and thus provides a
good template for building models with “imperfectly
optimal observers” (Maloney & Zhang, 2010) or
“model mismatch” (Orhan & Jacobs, 2014; Beck et al.,
2012; Acerbi et al., 2014).

We model the observer’s decision process as
consisting of an encoding stage and a decision stage.
The encoding stage describes the task statistics and our
assumptions about how memories are generated. In
the decision stage, the observer calculates a decision
variable based on their belief of the encoding stage and
decides whether to report “change” or “no change”
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based on some decision rule. We compared two models:
one in which uncertainty is maintained and used and
another that is not, named the “Use Uncertainty” and
the “Ignore Uncertainty” models, respectively. This
section describes how these models were defined, fit,
and compared.

Encoding stage

In this section, we define the statistical structure
of the experiment and define our assumptions about
how memories are generated in an observer. On every
trial, there is a 0.5 probability of there being a change,
p(C = 1) = 0.5, where C takes values 0 (no change)
and 1 (change). On change trials, exactly one item
changes in its orientation, and each item is equally
probable to be changed. The orientation change, �,
is drawn from a uniform distribution, p(�) = 1

2π .
(For mathematical convenience, and without loss of
generality, we doubled the actual orientation of stimuli
in all model specifications such that the values span 0 to
2π rather than 0 to π . We do not double these values
when illustrating model fits.)

We denote the vector of all orientations of the
items presented on the first display by ξ, in which
each element is an independent draw from a uniform
distribution over orientation space. The vector of
orientations at the second display, φ, was identical to ξ
in no-change trials. In change trials, the ith element of
φ, the location of change, was equivalent to ξi + �.

We model the memory process for each item of
each display according to the Variable Precision model
(van den Berg et al., 2012; Fougnie et al., 2012), by
which memories are described as a continuous resource
that randomly fluctuates across items and trials. The
noisy measurements of each item on each display,
x = (x1, ..., xN ) and y = (y1, ..., yN ), are conditionally
independent and drawn from a Von Mises distribution
centered on the actual orientation presentation,

p(x|ξ; κx) =
N∏
i=1

p(xi|ξi, κx,i)

=
N∏
i=1

1
2πI0(κx,i)

eκx,i cos(xi−ξi )

p(y|φ; κy) =
N∏
i=1

p(yi|φi, κy,i)

=
N∏
i=1

1
2πI0(κy,i)

eκy,i cos(yi−φi ).

The κs are the concentration parameter of the Von
Mises distribution and are related to the precision

with which each item is remembered; a higher κ
corresponds to higher precision. The subscript of
each κ indicates which item it refers to (e.g., κx,i is
concentration parameter for xi, the ith item in the
first stimulus presentation). We assume that memory
precision varies across items, above and beyond the
precision differences, due to stimulus reliability. In other
words, κx,i and κy,i are themselves random variables,
rather than single values. Rather than sampling κ itself,
we sample the Fisher information of the Von Mises
distribution, J, from a gamma distribution:

p(J ) = 1

	
(
J̄
τ

)
τ J̄/τ

J
J̄
τ
−1eJ/τ ,

where τ is the scale parameter of the gamma distribution
and J̄ is the mean precision. The relationship between J
and κ is the following:

J = κ
I1(κ )
I0(κ )

,

where I0 is a modified Bessel function of the first
kind of order 0 and I1 is a modified Bessel function
of the first kind of order 1 (van den Berg et al., 2012;
Keshvari et al., 2012). We allow the mean precision
to differ across stimulus shape; the precisions of
memories corresponding to low-reliability ellipses are
drawn from a gamma distribution with mean J̄low and
high-reliability ellipses with mean J̄high. Parameter τ is
shared across both distributions. Because items in the
first display were presented earlier, there are certainly
differences in the precision with which items in the first
and second displays are maintained, independent of
ellipse reliability. However, the amount that the first
and second displays contribute to the overall measured
change is extremely hard to tease apart in the model.
Thus, we use one parameter per reliability and recognize
that this estimate will be some average of the precisions
of the first and second displays.

When modeling the Line condition, we have an
additional parameter, J̄line, which corresponds to the
mean precision with which each line on the second
display is remembered by the observer. To limit model
complexity, the gamma function from which each line’s
precision is drawn shares the same scale parameter τ as
the distributions from which the ellipse precisions are
drawn.

Decoding stage

Decision variable
The essence of Bayesian inference is that an

observer can compute a posterior over task-relevant
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latent variables, and should if they want to maximize
performance. In this case, the observer should calculate
the probability of the state of the world (i.e., change or
no change) given their observations, p(C|x, y), which
they can compute using Bayes rule. With a scenario
in which there are only two states of the world, it is
convenient to combine these into a ratio. Thus, we
assume the observer calculates, for each item, the
ratio of the likelihood of there being change and the
likelihood of there being no change:

d = p(C = 1|x, y)
p(C = 0|x, y)

= p(x, y|C = 1)p(C = 1)
p(x, y|C = 0)p(C = 0)

. (1)

Details of the derivation can be found in the
Supplementary Materials, but this simplifies to the
following expression:

d = p(C = 1)
p(C = 0)

1
N

N∑
i=1

di, (2)

where

di = I0(κx,i)I0(κy,i)

I0
(√

κ2
x,i + κ2

y,i + 2κx,iκy,i cos(xi − yi)
) . (3)

I0 is a modified Bessel function of the first kind of
order 0, and the κs are the concentration parameters
of the noise distributions for the item indicated in the
subscript. Intuitively, di provides a measure of the
evidence of change for the ith item. It increases with
the measured amount of change, xi − yi, weighted
by a function of the precision with which xi and yi
are remembered. The dis are averaged in the decision
variable d , providing the optimal measure of evidence
of change of the entire display.

This is the step in which the use of uncertainty
comes in. Observers who correctly maintain and use
uncertainty (i.e., observers who act in accordance
with the optimal, “Use Uncertainty” model) compute
di exactly as described. However, observers acting in
accordance with the “Ignore Uncertainty” model do
not know or do not consider that the precision of
their memories for all items in both displays varies.
Computing the decision rule for the Ignore Uncertainty
observer is the same as replacing all κs in Equation 3
with a constant, resulting in the following local decision
variable:

di = I20 (κass))

I0
(
κass

√
2 + 2 cos(xi − yi)

) , (4)

where κass is the assumed precision for all items on
all displays. The decision variable thus becomes just
a function of cos(xi − yi), because the remainder of
the expression is constant. The Ignore Uncertainty
observer thus ignores any factor that could have
affected their memory precision. We recognize this is a

no change
change

measured change (º)
0-90 90

pr
ob

ab
ili

ty

report
“change”

report
“change”

Low uncertainty

High uncertainty

Figure 3. Model didactics. This didactic illustrates a simplified
one-item version of this task. The probability of the measured
change for an item given that the item did (orange) or did not
(blue) change orientation, as estimated by the optimal
observer. Uncertainty modulates the width of the no-change
distribution, such that higher uncertainty makes the no-change
distribution wider (bottom). The optimal observer (with k = 0)
places their decision boundaries at the intersection of the
change and no-change distributions (vertical dashed lines),
reporting “change” whenever that state of the world is more
probable (shaded region) and “no change” otherwise.

strong assumption, and we weaken it in the subsequent
Model Variants section.

Decision rule
The observer maps this decision variable onto

a response by reporting “change” whenever the
probability of there being a change is greater than 0.5
(Figure 3). An optimal observer would thus report
“change”when the ratio of the likelihood of there being
a change and the likelihood of there being no change
(Equation 2) are greater than 1. For convenience, we
use the logarithm of the likelihood ratio; the optimal
observer would thus report “change” if this value is
greater than 0. However, we allow the observer to have
some response bias (e.g., due to unequal priors, rewards,
or motor costs) and thus implement the following
decision rule:

log

(
1
N

N∑
i=1

di

)
> k, (5)

where k is a free parameter. For both models, we
implemented global decision noise by adding zero-mean
Gaussian noise with standard deviation σd to the log
of decision variable d (Keshvari et al., 2012; Acerbi
et al., 2014; Mueller &Weidemann, 2008). Additionally,
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participants randomly guess with probability λ, due to
factors such as lapses in attention.

Parameter estimation and model comparison

Parameters
Both models in both conditions have parameters

J̄high, J̄low, τ, k, λ, and σd. Parameters J̄high and
J̄low correspond to the mean precision of the
high- and low-reliability ellipses, respectively. Precision
is also affected by the scale parameter of the gamma
distribution from which item-wise precision is drawn,
τ ; this value is shared across the two ellipse types and
the line when applicable. Parameter k is the observer’s
response bias; λ is the probability on each trial that
the observer lapses and responds randomly; σd is the
standard deviation of the Gaussian from which decision
noise is simulated.

When fitting data from the Line condition, there is an
additional parameter J̄line, corresponding to the mean
precision with which the line stimulus is represented.
The Ignore Uncertainty model has one additional
parameter: Jass, the assumed precision of all stimuli in
both displays.

Parameter estimation
The likelihood of the parameter combination θ for

a given participant and model is the probability of the
data given the parameter combination. We used the
log-likelihood, which we denote LL:

LL(θ)= log p(θ|data,model)

= log
Ntrials∏
t

p(rt|θ)

=
Ntrials∑
t

log p(rt|θ),

where rt is the participant’s response on the tth trial.
For each participant, we used maximum-likelihood
estimation to find which parameter combination
best describes participants’ data. Computing the
LL analytically is intractable, so we used inverse
binomial sampling (IBS; van Opheusden et al., 2020),
a method that efficiently computes an unbiased
estimate of the LL. This calculation is stochastic, so we
additionally used an optimization algorithm, Bayesian
Adaptive Direct Search (BADS), that can account for
stochasticity and expensive LL evaluations (Acerbi &
Ma, 2017). BADS explicitly incorporates uncertainty
in the estimated LL and converges in fewer function
evaluations than other stochastic optimization methods
(e.g., covariance matrix adaptation evolution strategy

(CMA-ES), genetic algorithms), making it an ideal
optimization method when likelihood calculations are
computationally expensive and stochastic. We used
20 different starting positions, using Latin hypercube
sampling, to reduce the probability of finding a
local minimum. We took the parameter combination
corresponding to the minimum negative log-likelihood
of our runs as the maximum likelihood (ML) parameter
estimate. The estimated LL at the candidate optimum
was reevaluated using 1,000 repetitions in IBS, in order
to reduce the standard deviation of estimation noise to
less than 1. We denote the maximum log-likelihood by
LL∗.

Model comparison
We compared models using the corrected Akaike

information criterion (AICc; Hurvich & Tsai, 1987)
and the Bayesian information criterion (BIC; Schwarz,
1978). BIC penalizes for number of model parameters
Npars harsher than AICc does.

AICc = −2LL∗ + 2Npars + 2Npars(Npars + 1)
Ntrials − Npars − 1

BIC = −2LL∗ + 2Npars logNtrials

Modeling results

We compared the fits of the Use Uncertainty and
Ignore Uncertainty models to each of the conditions
separately. The Use Uncertainty model provides a
good qualitative fit to the data in both conditions
(top row of Figure 4A), while the Ignore Uncertainty
model is unable to capture the data (bottom row of
Figure 4A). To compare models quantitatively, we used
summed �AICc and �BIC, that is, the difference of
summed AICc (respectively, BIC) across participants
between the Ignore Uncertainty and Use Uncertainty
models (positive values mean that Use Uncertainty fits
better). Summing model comparison metrics across
participants implicitly assumes that all participants are
fit by the same model. For both conditions and model
comparison metrics, participants were better fit by the
Use Uncertainty model than the Ignore Uncertainty
model (summed [95% bootstrapped confidence interval
(CI)] �AICc across subjects – Ellipse: 3,091 [2,015,
4,321], Line: 2,764 [1,468, 4,400]. �BIC – Ellipse: 3,263
[2,155, 4,450], Line: 2,935 [1,640, 4,433]). Note that,
while reporting the summed �AICc and �BIC, for
visualization, we plot the individual differences and
plot the 95% CIs of the median �AICc (Figure 4B).
Parameter estimates for the Use Uncertainty model
in the Ellipse and Line condition can be found in the
Supplementary Materials (Supplementary Tables S1
and S2, respectively).
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Figure 4. Model fits. (A)M ± SEM data (error bars) and model fits (fills) for the Use (top) and Ignore (bottom) Uncertainty models and
the Ellipse (left) and Line (right) conditions. For each model and condition, the left graph illustrates the proportion report “change” as
a function of amount of change. Data and models are binned by quantiles, and color indicates the number of high-reliability ellipses
in the first display. The right graph illustrates the proportion hits for high-reliability items (green), hits for low-reliability items (blue),
total hits (purple), and false alarms (yellow) as a function of number of high-reliability items. (B) Model comparison for the Ellipse
(left) and Line (right) conditions. Each bar indicates the individual-subject �AICc between the Use and Ignore Uncertainty models,
where a positive value indicates that the Use Uncertainty model is favored. The vertical gray line indicates the median across
participants, and the shaded region illustrates the 95% bootstrapped confidence interval of the median. Only �AICcs are illustrated
here; �BICs gave similar results.

Model variants

While the Use Uncertainty model provides a good fit
to the data, the two models we have considered thus
far contain strong assumptions that uncertainty is
either perfectly used or entirely ignored. In this section,
we modify the assumptions by factorially comparing
different formulations of the encoding, inference,
and decision stage of the model (van den Berg et al.,
2014; Acerbi et al., 2012; Keshvari et al., 2012). A
factorial model comparison is an effective way of
testing which of the assumptions we made were critical
for accounting for human behavior, and thus which are
reasonable to make conclusions about. In this section,
we demonstrate that our general conclusions about
the use of uncertainty do not depend on the specific

assumptions we made when defining our model. We
only discuss the results of the Line condition here, since
it is the only condition that investigates the maintenance
of uncertainty in working memory. However, we did the
same analysis to the Ellipse condition data and found
consistent results (in Supplementary Materials).

Encoding

In both the Use and Ignore Uncertainty models,
we assumed that observers’ encoding noise followed
that of a Variable Precision model (van den Berg et al.,
2012; Fougnie et al., 2012). Here, we also consider
that observers’ memory precision varies only based on
stimulus type and does not fluctuate on an item-to-item
basis. With this “Fixed Precision” assumption of
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encoding noise, the κ for each item is determined only
by its stimulus type; high-reliability ellipses would be
encoded with parameter κhigh, low-reliability ellipses
with κlow, and lines with κline.

Inference

Observers calculate the decision variable according
to some inference process, which we allow to be
independent of the true generative process. The
potential model mismatch (Orhan & Jacobs, 2014;
Beck et al., 2012; Acerbi et al., 2014) between the
true and believed generative process could be due
to a result of wrong beliefs about the generative
process or computation limitations that prevent
accurate representation of the generative model. We
consider that observers may use partial knowledge
of uncertainty, rather than fully Using or Ignoring
uncertainty.

We consider that the observer may have one of four
inference models, listed below in decreasing order of
how many factors the observer takes into account in
their uncertainty:

(1) Variable precision (V): The observer believes that
mean memory precision varies with the exact
stimulus shape (low-reliability ellipse, high-reliability
ellipse, line) and that there is additional noise for
each item at each presentation. This inference
model is optimal when the true generative process is
Variable precision.

(2) Fixed precision (F): The observer believes that
memory precision varies with the exact stimulus
shape (low-reliability ellipse, high-reliability ellipse,
line) but does not consider that there is additional
noise for each item at each presentation. This
inference model is suboptimal when the true
generative process is Variable precision but optimal
when the true generative process is Fixed precision.

(3) Limited (L): The observer believes that memory
precision varies across shapes (ellipse vs. line). This
observer does not consider differences in precision
between high- and low-reliability ellipses or
additional noise for each item at each presentation.
This observer is suboptimal.

(4) Same precision (S): The observer believes that
memory precision is the same throughout the
condition and does not vary with stimulus shape
or anything else. This is the “Ignore Uncertainty”
observer and is suboptimal.

Note that the Variable and Same precision inference
schemes here are identical to that of Keshvari et al.
(2012), and the Fixed precision here is equivalent to
their “Equal” precision inference scheme.

Decision rule

The Use and Ignore Uncertainty models use
the optimal decision rule (Equation 5). Note that
participants may have incorrect assumptions about the
noise in their memory but still be acting in accordance
with Bayesian decision theory (i.e., still using the
correct decision rule), resulting in “imperfectly optimal
observers” (Maloney & Zhang, 2010). Alternatively,
participants could be calculating the optimal decision
variable but be using a suboptimal decision rule. Here,
we consider observers who use the max rule, reporting
“change” whenever the maximum evidence of change is
greater than some criterion, k,

max
i

di > k, (6)

rather than averaging dis. These observers are not Bayes
optimal, but are still using probabilistic computation
(i.e., still using their uncertainty) in the calculation of
di. In fact, in many cases, these decision rules do not
result in substantially different behavior (Ma et al.,
2015). For example, if all dis are similar, then a max and
an average will result in similar values. If the maximum
di is substantially larger than the others, both decision
rules can result in similar behavior by adjusting k.

Parameters

There are two possible encoding schemes ((V)ariable,
(F)ixed), four possible inference schemes ((V)ariable,
(F)ixed, (L)imited, (S)ame), and two possible decision
rules ((O)ptimal, (M)ax). Factorially combining each of
these characteristics would yield 16 different models.
We choose not to consider the models in which the
generative model is “F” but the observer assumes
“V” under the assumption that people tend not to
assume the (perceptual) world is more complicated
than it actually is; thus, we test a total of 14 models.
We denote each model by the letters corresponding to
their encoding scheme, inference scheme, and decision
rule (e.g., VVO is the model with Variable precision
encoding, an observer assumes Variable precision,
and an Optimal decision rule). The VVO model is the
Use Uncertainty model; the VSO model is the Ignore
Uncertainty model.

Encoding parameters. Like before, observers with
Variable precision encoding have parameters J̄high, J̄low,
J̄line, and τ . Observers with Fixed precision encoding
have parameters Jhigh, Jlow, and Jline.

Inference parameters. For the observer who correctly
infers their encoding process (i.e., VVO, VVM, FFO,
or FFM), there are no additional parameters. If the
observer has Variable precision encoding but does not
take into account individual-item variations (i.e., VFO
or VFM), then the assumed precision is Jhigh = J̄high,
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Decision rule

Encoding Inference (O)ptimal (M)ax

(V)ariable (V)ariable J̄high, J̄low, τ, k, λ, σd(, J̄line) J̄high, J̄low, τ, k, λ, σd(, J̄line)
(F)ixed J̄high, J̄low, τ, k, λ, σd(, J̄line) J̄high, J̄low, τ, k, λ, σd(, J̄line)
(L)imited J̄high, J̄low, J̄ass,eτ, k, λ, σd(, J̄line, J̄ass,l ) J̄high, J̄low, J̄ass,eτ, k, λ, σd(, J̄line, J̄ass,l )
(S)ame J̄high, J̄low, J̄ass, τ, k, λ, σd(, J̄line) J̄high, J̄low, τ, k, λ, σd(, J̄line)

(F)ixed (F)ixed Jhigh, Jlow, k, λ, σd(, Jline) Jhigh, Jlow, k, λ, σd(, Jline)
(L)imited Jhigh, Jlow, Jass,e, k, λ, σd(, Jline, Jass,l ) Jhigh, Jlow, Jass,e, k, λ, σd(, Jline, Jass,l )
(S)ame Jhigh, Jlow, Jass, k, λ, σd(, Jline) Jhigh, Jlow, k, λ, σd(, Jline)

Table 2. Model parameters. Model parameters for Line condition. Parameters not used for fitting the Ellipse condition are displayed in
parentheses. The top bolded cell corresponds to parameters of the Use Uncertainty (VVO) model. The bottom bolded cell
corresponds to the parameters of the Ignore Uncertainty (VSO) model.

Decision rule

(O)ptimal (M)ax

Encoding Inference �AICc �BIC �AICc �BIC

(V)ariable (V)ariable 0 [0, 0] 0 [0, 0] 119 [19, 247] 119 [26, 247]
(F)ixed 295 [119, 502] 295 [114, 477] 381 [201, 569] 381 [200, 578]
(L)imited 2,069 [957, 3,433] 2,411 [1,326, 3,766] 3,167 [1,667, 4,688] 3,510 [2,212, 5,220]
(S)ame 2,764 [1,468, 4,400] 2,935 [1,640, 4,433] 2,680 [1,973, 3,513] 2,680 [1,993, 3,478]

(F)ixed (F)ixed 480 [36, 1,225] 309 [−141, 1,018] 360 [218, 528] 188 [46, 345]
(L)imited 1,685 [541, 3,130] 1,857 [723, 3,198] 1,738 [558, 3,277] 1,909 [700, 3,453]
(S)ame 1,098 [425, 1,923] 1,098 [379, 2,038] 2,220 [1,487, 3,150] 2,049 [1,337, 2,976]

Table 3. Summed �AICc and �BIC: Line condition. The sum and 95% bootstrapped confidence interval of the AICc and BIC differences
between the optimal VVO (Use Uncertainty) model and others. A positive value indicates that the VVO model provides a better fit to
the data. The cells corresponding to the Use (VVO) and Ignore (VSO) Uncertainty models are bolded.

Jlow = J̄low, and Jline = J̄line for high-reliability ellipses,
low-reliability ellipses, and lines, respectively. Limited
inference observers (i.e., VLO, VLM, FLO, FLM)
have two additional parameters: Jass,e and Jass,l,
corresponding to the assumed precision of the ellipses
and lines, respectively. Same inference observers, who
do not take any memory variations into account (i.e.,
VSO, VSM, FSO, FSM), have one additional parameter
Jass, corresponding to the assumed precision of all
items.

Decision parameters. Observers using both the
optimal or max decision rule have parameter k,
corresponding to the decision criterion. If any item has
a decision variable greater than k, then they will report
“change.”

Each model and its corresponding parameters
is listed in Table 2. Note that the Same inference
observer who uses the max rule (i.e., VSM, FSM) has
one less parameter than their Optimal decision rule
counterpart (i.e., VSO, FSO) because making a decision
depends only on the item with the largest measured
change.

Model comparison results

Comparison of individual models
As previously described, we estimated parameters

for each participant and compared models using
AICc and BIC. In this section, we only discuss the
results of the Line condition using summed AICc and
BIC differences between the VVO (Use Uncertainty)
and other models. We only discuss the data from
the Line condition because it is the only condition
that allows us to interrogate whether people are
maintaining the uncertainty that they use in the change
detection decision. For completeness, we report the
results of the Ellipse condition in the Supplementary
Materials.

When using AICc, the VVO model seems to be able
to capture the human data the best, indicated by a
positive summed �AICc and 95% bootstrapped CIs
compared to all alternative models. When using �BIC,
the VVO model still fits best, but the 95% CIs are not
above 0 for the FFO model, indicating that VVO does
not fit the data significantly better than the FFO model.
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Figure 5. Factorial model comparison. Model predictions and performance of all possible combinations of different encoding,
inference, and decision rules.M ± SEM data (error bars) and model fits (fills) for all models, organized into two columns by decision
rule. For each model (each row within each column), the left graph illustrates the proportion report “change” as a function of amount
of change. Color indicates the number of high-reliability ellipses (legend at the top of the figure). The middle graph illustrates the
proportion hits for high-reliability items (green), hits for low-reliability items (blue), hits averaged across the display (purple), and false
alarms (yellow) as a function of number of high-reliability items (legend at the top right of the figure). The right graph illustrates the
individual-participant �AICc, where positive numbers indicate the VVO model is a better fit to the data. The gray horizontal line and
shaded region illustrates median and the 95% bootstrapped confidence interval of the median across
participants.

Qualitatively, both VVO and FFO models fit the data
well (Figure 5). Note that, while reporting the summed
�AICc and�BIC, we plot the individual differences and
plot the 95% bootstrapped CIs of the median �AICc.

In the Supplementary Materials, we additionally
report the results of group Bayesian model selection
(BMS) for both conditions. While summing the �AICc
and �BIC implicitly assumes that participants are all fit
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by the same model, group BMS allows for participant
heterogeneity and directly infers the distribution of
participants across models. Using this alternative model
comparison metric does not really change our results;
VVO and FFO fit the participants’ data substantially
better than other models, but their performance against
one another depends on the model comparison metric.

Comparison of model families

A comparison of individual models did not provide a
clear picture of what factor, or combination of factors,
is most important to describe human data best. To
more directly address which factor contributes most to
a model’s success, we define model families, where each
family is a subset of all models that share a particular
level of a particular factor, regardless of their levels
of other factors (van den Berg et al., 2014; Shen &
Ma, 2019). For example, all seven observer models that
use an optimal decision rule would be included in the
(O)ptimal level of the decision rule factor, regardless of
their individual encoding or inference schemes. Similar
to Shen and Ma (2019), we compute the approximate
marginal likelihood for level i for factor F , Fi. To
calculate this value, we first marginalize over all of our
tested models M:

L(Fi) = p(data|Fi) ≈
∑
M

p(data|M )p(M|Fi ). (7)

Next, we assume that all models containing level i of
factor F are a priori equally probable, so that

L(Fi ) ≈ 1
number of models of level i for factor F

∑
Fimodels

p(data|M ). (8)

We approximate the log marginal likelihood of a given
model with −0.5 ∗ AICc (Burnham & Anderson, 2002):

L(Fi ) ≈ 1
number of models of level i for factor F

∑
Fimodels

e−.5AICc(M ). (9)

We define the log-level likelihood ratio between level i
and j as the ratio of their log marginal likelihoods:

LLLRAICc = log p(data|Fi )
p(data|Fj )

≈ log

( ∑
Fimodels

e−.5AICc(M )

)
− log

( ∑
Fjmodels

e−.5AICc(M )

)

+ log
(
number of models of level j for factor F
number of models of level i for factor F

)
(10)

We also compute LLLRBIC, which approximates the
log marginal likelihood of a given model with −0.5 *
BIC and more severely penalizes models with more
parameters. To interpret the values for the LLLRs,
we use Jeffrey’s scale, a common scale used when
interpreting Bayes factors (Jeffreys, 1961).

Model factor 1: encoding scheme: The first model
factor we explored is the observer’s encoding scheme.
When using LLLRAICc, there is weak support that
(V)ariable precision encoding outperforms (F)ixed
precision encoding (summed [95% CI] 84 [0, 181]).
However, there is no evidence when using LLLRBIC
that either encoding scheme is favored (13 [−71, 116]).
These results taken together imply weak and unreliable
evidence in favor of a variable precision encoding.

Model factor 2: inference scheme: The second model
factor is the observer’s inference scheme. As with the
encoding scheme, (V)ariable precision fits better than
(F)ixed when using AICc (105 [23, 200]) but not when
using BIC (24 [−57, 126]). For both model comparison
metrics, (L)imited and (S)ame inference schemes
demonstrate a consistent lack of goodness of fit when
compared to V (Limited – AICc: 500 [148, 928], BIC:
599 [253, 1,047]; Same – AICc: 565 [204, 940], BIC:
565 [214, 974]), F (Limited – AICc: 394 [68, 829], BIC:
575 [242, 996]), and Same (AICc: 460 [124, 874], BIC
541, [193, 996]) inference schemes. L and S inference
schemes perform similarly (AICc: 66 [26, 105], BIC:
−34 [−85, 15]). These results provide strong evidence
that participants use either a V or F inference scheme
but do not provide strong evidence to arbitrate between
the two.

Model factor 3: decision rule: The third model factor
is the observer’s decision rule. There is moderate
evidence that the (O)ptimal decision rule fits better
than the (M)ax decision rule when using BIC (69 [21,
132]) but not AICc (41 [−2, 108]). This result provides
inconclusive evidence that participants are using the
optimal decision rule.

Model factor 4: matching encoding and inference
schemes: Finally, we define the fourth factor as
whether encoding and inference schemes are matched
(suggesting people have accurate representation of
uncertainty) or mismatched (suggesting people do
not have accurate representation of uncertainty).
While the previous three factors each investigate the
effect of one model dimension on goodness of fit,
this factor explores how the relationship between
two model dimensions affects goodness of fit. This
factor is arguably the most important aspect of the
model in addressing our question of whether people
maintain and use their uncertainty accurately over a
working memory delay. The four models with matching
encoding and inference schemes are VVO, VVM, FFO,
and FFM, and the remaining 10 models are included in
an “inference mismatched” level. There is very strong
evidence that models where the inference and encoding
schemes match fit data better than models that do not
have encoding-matched inference schemes (AICc: 136
[51, 237], BIC: 200 [124, 291]). This result provides
strong support that people accurately represent their
uncertainty when completing the change detection
task.
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Discussion

In this article, we investigated whether uncertainty is
maintained and implicitly used in a working memory–
based decision. First, we demonstrated through
the Ellipse condition that people use uncertainty
implicitly in a working memory task if that uncertainty
information was available after the delay (i.e., if
uncertainty did not need to be maintained). Second and
more important, we showed through the Line condition
that people not only use uncertainty but maintain this
information over the working memory delay. Finally,
we factorially tested different model encoding schemes,
inference schemes, and decision rules and found that
people were indeed best described by models in which
observers accurately maintain and use uncertainty in
their decision.

First, we demonstrated through the Ellipse condition
that people could use uncertainty implicitly in a working
memory task if that uncertainty information was
experimentally available. While the change detection
task has been an experimental staple in the working
memory literature (e.g., Luck & Vogel, 1997; Phillips,
1974; Pashler, 1988), the majority of these tasks feature
large, categorical changes in the stimulus. In contrast,
our task, which is a direct experimental replication of
that of Keshvari et al. (2012), featured changes that
varied on a trial-to-trial basis. Trial-to-trial fluctuations
in stimuli and withholding of feedback allow for a
strongest test of probabilistic computation because
observers would need to maintain a belief distribution
over stimulus values to maximize performance in this
task (Ma & Jazayeri, 2014). Through formal model
comparison, we showed that all participants in the
Ellipse condition are better fit by the Use Uncertainty
model than the Ignore Uncertainty model. The
Use Uncertainty model was identical to the model
that was found to describe participant data best in
the study by Keshvari et al. (2012). These results
are also theoretically consistent with Devkar and
others’ (2017) work, despite being slightly different
tasks.

Second and more important, we showed through the
Line condition that people not only use uncertainty but
maintain this information over the working memory
delay. Like in the Ellipse condition, we found that
all participants in the Line condition were better
fit by the Use Uncertainty model than the Ignore
Uncertainty model. However, the conclusion of this
model comparison is critically different. In the Ellipse
condition as well as in previous studies (Keshvari
et al., 2012; Devkar et al., 2017), the ellipses were
presented after the working memory delay, with the
same reliability as before. With these experimental
designs, reliability information could be used as a
heuristic to inform uncertainty, thus not requiring

this information to be maintained in memory. In
other words, these previous studies cannot make any
conclusions about the contents of working memory,
only the decision-making process that follows it. Our
result, in contrast, demonstrates that uncertainty was
actually maintained in working memory, since the
information was not available to the participants at
the decision time through a heuristic such as ellipse
reliability.

Finally, we conducted a factorial model comparison
to investigate whether our conclusions were due to
specific assumptions about model encoding schemes,
inference schemes, and decision rules. When comparing
individual models, models with different combinations
of Variable or Fixed precision encoding scheme,
Variable or Fixed precision inference scheme, and
Optimal or Max decision rule were able to fit the data
well. When comparing model families, we found that
the only factor that clearly determined the goodness of
fit of a model was whether the encoding and inference
schemes were matched; only models with matching
encoding and inference schemes captured human
behavior qualitatively well, and these models were
quantitatively superior to those without matching
encoding and inference schemes. We thus conclude that
the most important aspect of the model is that the
observer accurately uses their uncertainty in the change
detection decision, not the specifics of the encoding or
inference process.

The results of this study corroborate those of
previous studies and extend them by providing
evidence that people maintain uncertainty and use it
implicitly and in a way that is behaviorally beneficial.
This is in contrast to studies that asked participants
to make explicit reports such as confidence ratings
(Rademaker et al., 2012; Vandenbroucke et al., 2014;
Samaha & Postle, 2017), because use of uncertainty
in these tasks is neither implicit nor behaviorally
beneficial (i.e., your confidence rating doesn’t affect
your performance). Tasks such as the “choose best”
(Fougnie et al., 2012; Suchow et al., 2017) and wager
paradigms (Yoo et al., 2018; Honig et al., 2020) use
uncertainty in a performance-relevant way, but it is
arguable whether this use of uncertainty is implicit.
These tasks can be considered implicit in the sense
that there is a nontrivial mapping from uncertainty to
performance-maximizing behavior in a postperceptual
decision but explicit in the sense that this decision is
related to a conscious feeling of trust in a memory.
Conversely, a whole-report experiment by Adam et
al. (2017) analyzed by Schneegans et al. (2020) clearly
demonstrates an implicit use of uncertainty by showing
participants reported remembered items in decreasing
order of memory precision. However, unlike in our
study, this use was not behaviorally beneficial; Adam
and colleagues found a nonsignificant performance
difference when allowing participants to freely report
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versus being probed on which items to report their
memory of.

A typical, and reasonable, criticism of psychophysical
experiments like the one presented in this article is
whether it can successfully distinguish whether people
are representing uncertainty per se or some stimulus
feature (i.e., ellipse reliability) as a proxy for it. Because
observers with a Variable precision inference scheme
represent uncertainty that fluctuates above and beyond
stimulus variability, it seems unlikely that this observer
would be representing uncertainty through stimulus
reliability alone. This is, however, a valid criticism of
the Fixed precision inference observer because the
variability of their uncertainty representation fluctuates
with stimulus reliability. While we did not directly
test this alternative explanation (e.g., Barthelmé &
Mamassian, 2010), we do not believe this criticism
trivializes our results.

First, our results do not provide any evidence that
people are simply maintaining ellipse reliability as a
proxy for uncertainty. If stimulus reliability was used
as a proxy for uncertainty, then models with a Fixed
precision inference scheme would explain data best,
independent of the encoding scheme. Instead, we found
that the most important aspect of our models’ goodness
of fit was that the encoding and inference schemes were
matched, suggesting that accurate representation of
uncertainty is the most important aspect to explaining
human behavior.

Second, performing this task while maintaining a
proxy to uncertainty is not as trivial as it may initially
seem. Participants would still have to maintain this
proxy to uncertainty over the working memory delay,
then map this value to their decision rule in a way
consistent with an optimal Bayesian observer. Since
participants were not provided feedback on their
performance, it is not obvious how they would have
learned this mapping throughout the experiment. It
is still possible that people do indeed map a stimulus
feature to a decision in a way that is behaviorally and
computationally indistinguishable from representing
uncertainty itself. We do not believe this explanation
would trivialize our results; either explanation still
allows us to conclude that people maintain uncertainty
(or a proxy of it) across a working memory delay and
use it implicitly in a task to improve performance.

Our results suggest that existing computational
models of working memory that currently ignore
uncertainty should be updated. For example, attractor
network models currently maintain a point estimate of
a single-item feature through the mean of a stereotyped
bump in a network of neurons (Ermentrout, 1998;
Wang, 2001; Compte, 2006). Thus, there is typically
no notion of uncertainty in this framework. Lim
and Goldman (2014) demonstrated that altering
the network connectivity and dynamics results in
“negative-derivative feedback models,” in which
networks can vary not only in mean but also in

amplitude. Probabilistic population coding and neural
network models have implemented precision through
input gain (Ma et al., 2006; Orhan & Ma, 2017).
Additional research must investigate whether these
negative-derivative feedback models can represent
a memory’s precision through the amplitude of the
network maintaining it, precision that could be read
out from the observer as uncertainty.

Additionally, computational models could be used
to decode uncertainty from neural activity in working
memory tasks. Work in visual perception demonstrates
that uncertainty information is represented in primary
visual cortex (van Bergen et al., 2015; van Bergen,
2019; Walker et al., 2020; Hénaff et al., 2020). These
studies built normative Bayesian models to infer
stimulus value from functional magnetic resonance
imaging blood oxygen level dependent (BOLD) signal.
The likelihood of the stimulus, and thus uncertainty,
could be read out from the models. Estimates of
trial-specific uncertainty are positively correlated
with error, suggesting that primary visual cortex held
uncertainty information. Since working memories have
been shown to be maintained in the same sensory
areas with which they are perceived (e.g., Curtis &
D’Esposito, 2003; Postle, 2006; D’Esposito & Postle,
2015; Harrison & Tong, 2009), perhaps visual working
memory uncertainty is also stored in visual cortex. To
more rigorously test the representation of uncertainty
decoded from BOLD data, future studies can correlate
decoded uncertainty with behavioral measures of
uncertainty such as confidence ratings (Rademaker
et al., 2012) or postdecision wagers (Yoo et al., 2018;
Honig et al., 2020). Additionally, future studies can try
to fit individual-trial data using these methods, which
is more compelling evidence in favor of a model than a
correlation.

Overall, this article shows that people have
uncertainty that reflects their memory noise at an item-
specific level, and they maintain this information over a
working memory delay. This research demonstrates that
there is other information, beyond a point estimate,
maintained in working memory and used in later
decisions.

Keywords: visual working memory, Bayesian observer,
optimal, uncertainty
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