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Neurons in primate visual cortex (area V1) are tuned for
spatial frequency, in a manner that depends on their
position in the visual field. Several studies have
examined this dependency using functional magnetic
resonance imaging (fMRI), reporting preferred spatial
frequencies (tuning curve peaks) of V1 voxels as a
function of eccentricity, but their results differ by as
much as two octaves, presumably owing to differences
in stimuli, measurements, and analysis methodology.
Here, we characterize spatial frequency tuning at a
millimeter resolution within the human primary visual
cortex, across stimulus orientation and visual field
locations. We measured fMRI responses to a novel set of
stimuli, constructed as sinusoidal gratings in log-polar
coordinates, which include circular, radial, and spiral
geometries. For each individual stimulus, the local
spatial frequency varies inversely with eccentricity, and
for any given location in the visual field, the full set of
stimuli span a broad range of spatial frequencies and
orientations. Over the measured range of eccentricities,
the preferred spatial frequency is well-fit by a function
that varies as the inverse of the eccentricity plus a small
constant. We also find small but systematic effects of
local stimulus orientation, defined in both absolute
coordinates and relative to visual field location.
Specifically, peak spatial frequency is higher for
pinwheel than annular stimuli and for horizontal than
vertical stimuli.

Introduction

A fundamental goal of visual neuroscience is to
quantify the relationship between stimulus properties
and neural responses, across the visual field and
across visual areas. Studies of primary visual cortex

(V1) have been especially fruitful in this regard, with
electrophysiological measurements providing good
characterizations of the responses of individual
neurons to a variety of stimulus attributes (Hubel &
Wiesel, 1962; De Valois et al., 1982; Cavanaugh et al.,
2002; Ringach, 2002). Nearly every neuron in V1 is
selective for the local orientation and spatial frequency
of visual input, and this has been captured with simple
computational models built from oriented bandpass
filters (Pollen & Ronner, 1983; Jones & Palmer, 1987;
Daugman, 1989; Heeger, 1992; Rust et al., 2005; Vintch
et al., 2015).

The characterization of individual neural responses
provides only a partial picture of the representation of
visual information in V1. In particular, we know that
the representation is not homogeneous—receptive field
sizes grow and spatial frequency preferences decrease
with distance from the fovea (eccentricity; De Valois
et al., 1982)—but we do not have a general quantitative
description of the relationship between these response
properties and location in the visual field. There are
hundreds of millions of neurons in V1 (Wandell, 1995),
and thus, single-unit electrophysiology is unappealing
as a methodology for addressing this question.1
Functional magnetic resonance imaging (fMRI) offers
complementary strengths and weaknesses, allowing
the simultaneous measurement of responses across all
of the visual cortex, but at a resolution in which each
measurement represents the combined responses of
thousands of neurons, limiting the characterization
to properties that change smoothly across the cortical
surface. Fortuitously, core properties of V1 such as
position and spatial frequency tuning do vary smoothly
across the cortical map (Hubel & Wiesel, 1962; Issa
et al., 2000), and so are well-suited for summary
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measures with fMRI. This has led to successful
characterization of “population receptive fields”
(pRFs), which specify the location and size in the visual
space of voxel responses (Wandell & Winawer, 2015).
A recent study (Aghajari et al., 2020) characterized
voxel-wise spatial frequency tuning in early visual
cortex, but did not provide an overall description of the
dependence of this tuning on retinotopic location or
stimulus orientation.

Here, we provide a compact parametric
characterization of the spatial frequency and
orientation preferences of PRFs in area V1, across
the visual field. How compact a description can one
expect? The information processing of a cortical area
such as V1 would be simplest to study and describe if
each location in the map analyzed the image with the
same computations. This assumption of homogeneous
processing is central to signal and image processing and
underlies recent developments in computer vision based
on convolutional neural networks (LeCun et al., 1989).
But this assumption can be immediately rejected for
primate visual systems, because we know that resolution
decreases precipitously with eccentricity. At the other
extreme, if each part of the map analyzed the image in
an entirely unique way, the prospect of understanding
its function would be hopeless. Fortunately, many
properties, such as receptive field size, vary smoothly
and systematically with receptive field position, and
similar types of models are able to successfully describe
neural data across species, individuals, and map
locations (e.g., Carandini, 2005).

An attractive intermediate possibility is that cortical
processing is conserved across the visual field, up
to a dilational scale factor. One hypothesis is that
eccentricity-dependent receptive field scaling emerges
first in the retinal ganglion complexes, and then all
subsequent stages simply perform a homogeneous
(convolutional) transform on their afferents, thus
inheriting the eccentricity scaling of receptive field
sizes. This process would result in all neuronal tuning
across the cortex being scaled versions of each other.
For example, if V1 neurons were tuned such that their
preferred spatial frequency was always p periods per
receptive field, and their receptive fields grew linearly
as they moved away from the fovea, such that s = ar
(where s is the diameter of the receptive field and r
is the eccentricity), then the neuronal peak spatial
frequency would equal f = p/s = p/ar. If this equation
approximates the true relationship between spatial
frequency tuning and eccentricity, then sinusoidal
gratings, which have a constant frequency everywhere
in the image, are an inefficient choice of stimulus to
measure this, as high frequencies will be shown at the
periphery and low frequencies at the fovea, neither of
which will drive responses effectively.

To enable an efficient characterization of local spatial
frequency preferences, we developed a novel set of global
stimuli in which local frequency scales inversely with

eccentricity, and which span a variety of orientations.
We use these stimuli to probe the dependency of
spatial frequency preferences on orientation and retinal
location, and summarize this finding using a compact
functional description that is jointly fit to data over the
whole visual field. The model parameterization allows
spatial frequency tuning to vary with eccentricity,
and allows both spatial frequency tuning and blood
oxygen level-dependent (BOLD) amplitude to vary
with retinotopic angle and stimulus orientation. This
modeling approach allows flexibility for our parameters
of interest, but is not arbitrarily flexible. This condition
is necessary to be able to concisely describe how spatial
frequency is encoded across the whole visual field and to
enable extrapolation to stimuli or visual field positions
not included in the study.

Methods

All experimental materials, data, and code for this
project can be found online under the MIT or similarly
permissive license. Specifically, minimally preprocessed
data are found on OpenNeuro (Markiewicz et al.,
2021), code on GitHub, and other materials on OSF
and the NYU Faculty Digital Archive (view README
in the software repository for download and usage
instructions).

Stimulus design

To efficiently estimate preferred spatial frequency
across the visual field, we use a novel set of
grating stimuli with spatially varying frequency
and orientation. Figure 1 illustrates the logic of
the stimulus construction, which is designed for
efficient characterization of a system whose preferred
spatial frequency falls with eccentricity. Conventional
large-field two-dimensional sine gratings will be
inefficient for such a system, because the stimulus
set will include low-frequency stimuli, which are
ineffective for the fovea, and high-frequency stimuli
which are ineffective for the periphery. Instead, we
construct “scaled” log-polar stimuli, such that local
spatial frequency decreases in inverse proportion to
eccentricity (Figure 2B). Specifically, all stimuli are of
the form

f (r, θ ) = cos(ωr ln(r) + ωaθ + φ), (1)
where the coordinates (r, θ ) specify the eccentricity and
polar angle of a retinal position, relative to the fovea.
The angular frequency ωa is an integer specifying the
number of grating cycles per revolution around the
image, and the radial frequency ωr specifies the number
of radians per unit increase in ln(r). The parameter
φ specifies the phase, in radians. The local spatial
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Figure 1. (A) Illustration of two extremal models for spatial frequency preferences across the visual field. Top: Preferences are
conserved across the visual field (despite changes in receptive field size). Bottom: Preferred spatial period (inverse of the spatial
frequency) is proportional to eccentricity (along with receptive field size). Tile image is an original photograph from author’s
collection. (B) Preferred SF (left) and period (right) as a function of eccentricity, for the two models (red and green curves). (C)
Efficiency of stimuli (dashed lines) for probing the scaling model. Top: If preferences scale with eccentricity, conventional full-field
two-dimensional sine gratings are an inefficient way to measure the spatial frequency tuning; gratings with a large period will be
ineffective at driving responses in the fovea and those with a low period will be ineffective for the periphery. Bottom: Oscillating
stimuli whose period grows linearly with eccentricity provide a more efficient choice.

frequency is equal to the magnitude of the gradient
of the argument of cos(·) with respect to the retinal
position (see Supplement section 1.1):

ωl (r, θ ) =
√

ω2
r + ω2

a

r
. (2)

That is, the local frequency is equal to the Euclidean
norm of the frequency vector (ωr, ωa) divided by the
eccentricity (in units of radians per pixel or radians per
degree, depending on the units of r), which implies that
the local spatial period of the stimuli grows linearly
with eccentricity. Similarly, the local orientation can
be obtained by taking the angle of the gradient of the
argument of cos(·) with respect to retinal position (see
Supplement section 1.1):

θl (r, θ ) = θ + tan−1
(

ωa

ωr

)
. (3)

That is, the local grating orientation is the angular
position relative to the fovea, plus the angle of the
two-dimensional frequency vector (ωr, ωa). Note
that θl is in absolute units (e.g., θl = 0 indicates local
orientation is vertical, regardless of location). For
our stimuli, this depends on the polar angle, but a
uniform grating has the same θl value everywhere in the
image (its orientation thus does not depend on polar
angle).

We generated stimuli corresponding to 48 different
frequency vectors (see Figure 2), at 8 different phases
φ ∈ {0, π/4, π/2, . . . , 7π/4}. The frequency vectors
were organized into five different categories:

(1) Pinwheels:
ωr = 0, ωa ∈ {6, 8, 11, 16, 23, 32, 45, 64, 91, 128}

(2) Annuli:
ωa = 0, ωr ∈ {6, 8, 11, 16, 23, 32, 45, 64, 91, 128}

(3) Forward spirals:
ωr = ωa ∈ {4, 6, 8, 11, 16, 23, 32, 45, 64, 91}

(4) Reverse spirals:
ωr = −ωa ∈ {4, 6, 8, 11, 16, 23, 32, 45, 64, 91}

(5) Fixed-frequency mixtures:
(ωr, ωa) ∈ {(8, 31), (16, 28), (28, 16), (31, 8),
(31, −8), (28, −16), (16, −28), (8, −31)}

Note that the ωa values must be integers (because
they specify cycles per revolution around the image),
and we chose matching integer values for ωr. Because
of this constraint, the pinwheel/annulus and the
forward/reverse spiral stimuli have slightly different
local spatial frequencies. For the same reason, the
local spatial frequency of the mixture stimuli is only
approximately matched across stimuli (

√
ω2
a + ω2

r ≈ 32).
Across all stimuli, the spatial frequencies presented at
any given eccentricity span a 20-fold range (Figure 2C).
For example, at the most foveal portion of the stimuli
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Figure 2. Stimuli. (A) Base frequencies (ωr, ωa ) of experimental stimuli. The stimulus category is determined by the relationship
between ωa and ωr, which determines local orientation information (Equation 3). (B) Example stimuli from four primary classes, at
two different base frequencies. These stimuli correspond to the dots outlined in black in A. (C) Local spatial frequencies (in cpd) as a
function of eccentricity. Each curve represents stimuli with a specific base frequency,

√
ω2
r + ω2

a, corresponding to one of the
semi-circular contours in A. The two rows of stimuli in B correspond to the bottom and third-from-bottom curves.

(from 1° to 2°) the frequencies are log-spaced from 0.6
to 13.65 cpd. In the most peripheral region (11° to 12°),
the range is 0.078 to 1.780 cpd.

Display calibration

The projector used to display stimuli in our
experiments was calibrated to produce light intensities
proportional to luminance. In addition, we wanted to
compensate for spatial blur (owing to a combination of
display electronics or optics) that could systematically
alter the frequency content of our stimuli. We estimated
the modulation transfer function (MTF) of the
projector (i.e., the Michelson contrast as a function
of spatial frequency), shown in Figure 3. We used a
calibrated camera and developed custom software
to process and analyze photographs of full-contrast
square-wave gratings. We found that the contrast of
the projected image decreased by roughly 50% because
it approached the Nyquist frequency of 0.5 cycles per
display pixel. We compensated for these effects by
rescaling the amplitude of low frequency content in our
stimuli, by an amount proportional to the inverse MTF
(note that the more natural procedure of increasing the
high frequency content is not practical, because it could
exceed the maximum contrast that can be displayed).

Figure 3. Estimated MTF of the projector used in our
experiments. Michelson contrast was measured for periods
from 2 to 256 pixels (blue points) and then fit with a univariate
spline (blue curve) with smoothing degree 1 (Virtanen et al.,
2020). The fitted spline was used for calibration.

Participants

Twelve participants (7 women and 5 men, aged 22 to
35 years), including an author (W.F.B.), participated in
the study and were recruited from New York University.
All subjects had normal or corrected-to-normal vision.
Each subject completed 12 runs, except for sub-04, who
only completed 7 of the 12 runs owing to technical
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issues. The quality of their GLMdenoise fits and their
final model fits do not vary much from those of the
other subjects. All subjects provided informed consent
before participating in the study. The experiment
was conducted in accordance with the Declaration of
Helsinki and was approved by the New York University
Ethics Committee on Activities Involving Human
Subjects.

Experimental design

The experiment was run on an Apple MacIntosh
computer, using custom scripts with PsychoPy (Peirce
et al., 2019a), presented on a luminance-calibrated
MTF-corrected VPixx ProPixx projector. Images were
projected onto a screen, which the subject viewed
through a mirror. The screen was 36.2 cm high and
83.5 cm from the subject’s eyes (73.5 cm from screen
to mirror, and approximately 10 cm from mirror to
eyes). Stimuli were constrained to a circular aperture
filling the height of the display (12° radius), with an
anti-aliasing mask at the center (0.96° radius). Each
stimulus class was presented in a 4-s trial, during which
the eight images with different phases were shown
in randomized order. Each of the eight images was
presented once, cycled on and off (300-ms on, 200-ms
off) to minimize adaptation. A movie of a single
run can be viewed online. Each of the 48 stimulus
classes was presented once in each of 12 runs, with
the presentation order of the stimulus classes and of
the phases randomized across runs. Subjects viewed
these stimuli while performing a one-back task on a
stream of alternating black and white digits (1-s on,
1-s off) at the center of the screen to ensure accurate
fixation, minimize attentional effects, and maintain a
constant cognitive state. Thus, the central 1° of vision
always contained either a blank midgrey screen or a
black or white digit. This practice lessens the possibility
of differences in fixational eye movements that might
arise from differences in stimulus structure near the
fovea. Behavioral responses were recorded using a
button box (see Supplement section 1.2 for behavioral
analysis).

fMRI scanning protocol

All MRI data for the spatial frequency experiment
were acquired at the NYU Center for Brain Imaging
using a 3T Siemens Prisma scanner with a Siemens 64
channel head/neck coil. For fMRI scans, we used the
CMRR MultiBand Accelerated EPI Pulse Sequence
(Release R015a) (TR, 1000 ms; TE, 37 ms; voxel
size, 2 mm3; flip angle, 68°; multiband acceleration
factor, 6; phase-encoding, posterior-anterior) (Feinberg
et al., 2010; Moeller et al., 2010; Xu et al., 2013).
High-resolution whole-brain anatomical T1-weighted

images (1 mm3 isotropic voxels) were acquired from
each subject for registration and segmentation using
a three-dimensional rapid gradient echo sequence
(MPRAGE). Two additional scans were collected
with reversed phase-encoded blips, resulting in spatial
distortions in opposite directions. These scans were
used to estimate and correct for spatial distortions in
the EPI runs using a method similar to Andersson et al.
(2003), as implemented in FSL (Smith et al., 2004).

Preprocessing

The fMRI data were minimally preprocessed using
a custom script (available from the Winawer lab),
which builds a Nipype (Gorgolewski et al., 2011,
2018) pipeline. Brain surfaces were reconstructed
using recon-all from FreeSurfer v6.0.0 (Dale
et al., 1999). Functional images were motion corrected
using mcflirt (FSL v5.0.10; Jenkinson et al., 2002)
to the single-band reference image gathered for
each scan. Each single-band reference image was
then registered to the distortion scan with the same
phase-encoding direction using flirt (FSL v5.0.10;
Jenkinson & Smith, 2001; Jenkinson et al., 2002;
Greve & Fischl, 2009). Distortion correction was
performed using an implementation of the TOPUP
technique (Andersson et al., 2003) using TOPUP and
ApplyTOPUP (FSL v5.0.10; Smith et al., 2004). The
unwarped distortion scan was co-registered to the
corresponding T1-weighted using boundary-based
registration (Greve & Fischl, 2009) with 9 degrees of
freedom, using bbregister (FreeSurfer v6.0.0). The
motion correcting transformations and BOLD-to-T1w
transformation were concatenated using ConvertXFM
(FSL v5.0.10) and then were applied to the functional
runs in a single step along with the unwarping
warpfields using ApplyWarp (FSL v5.0.10). Applying
the corrections in a single step minimizes blurring from
the multiple interpolations.

Retinotopy

A separate retinotopy experiment was used to
obtain the pRF location and size for V1 voxels in each
subject (Wandell & Winawer, 2015). This experiment
consisted of six standard pRF mapping runs, with
sweeping bar contrast apertures filled with a variety
of colorful objects, faces and textures. This stimulus
has been shown to be effective in evoking BOLD
responses across many of the retinotopic maps in
visual cortices (Benson & Winawer, 2018; Benson et al.,
2018; Himmelberg et al., 2021). The results of this
pRF mapping were combined with a retinotopic atlas
(Benson et al., 2014) to improve the accuracy of the
retinotopic map (see Benson & Winawer, 2018, for
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a description of this method). The stimulus, fMRI
acquisition parameters, and fMRI pre-processing for
the retinotopy experiments are described in detail in
Benson and Winawer (2018) and Himmelberg et al.
(2021).

Stimulus response estimation

Response amplitudes were estimated using the
GLMdenoise MATLAB toolbox (Kay et al., 2013a).
The algorithm fits an observer-specific hemodynamic
response function, estimating response amplitudes (in
units of percent BOLD signal change) for each voxel
and for each stimulus, with 100 bootstraps across runs.
Thus for each voxel we estimate 48 responses (one
for each unique pair (ωa, ωr), averaged over the eight
phases shown within the trials). The algorithm also
includes three polynomial regressors (degrees 0 through
2) to capture the signal mean and slow drift, and noise
regressors derived from brain voxels that are not well fit
by the GLM.

The combined retinotopy and GLMdenoise
measurements consist of (for each voxel): the visual
area, PRF location and size, and 100 bootstrapped
response amplitudes to each of the 48 stimuli.

One-dimensional tuning curves

We fit one-dimensional log-normal tuning curves
to the responses of groups of voxels at different
eccentricities (lying within 1° eccentricity bins):

β̂b(ωl ) = Ab · exp
(

− (log2(ωl ) + log2(pb))
2

2σ 2
b

)
, (4)

where β̂b(ωl ) is the average BOLD response in
eccentricity bin b at spatial frequency ωl (in cycles per
degree), Ab is the response gain, pb is the preferred
period (the reciprocal of the peak spatial frequency, ωb,
which is the mode of the tuning curve), and σb is the
bandwidth, in octaves. Fits were obtained separately for
the four primary stimulus classes (pinwheel, annulus,
forward spiral, and reverse spiral).

We fit these tuning curves 100 times per subject,
per stimulus class, and per eccentricity, bootstrapping
across the fMRI runs (12 per subject).

Two-dimensional tuning curves

Our one-dimensional tuning curves are averaged over
stimulus orientation and retinotopic angle. To capture
the effect of these additional stimulus attributes, we
developed a two-dimensional model for individual
voxel responses as a function of stimulus local spatial
frequency (in cycles per degree), ωl , stimulus local

orientation, θl , voxel eccentricity (in degrees), rv, and
voxel retinotopic angle, θv (Figure 4A). Responses are
again assumed to be log-normal with respect to spatial
frequency:

β̂v(ωl , θl ) = Av · exp
(

− (log2(ωl ) + log2(pv ))2

2σ 2

)
(5)

In our one-dimensional analysis, we fit parameters
{p,A, σ } separately to each eccentricity band and
stimulus class. Based on the results of that analysis (see
One-dimensional analysis), we assume σ is constant
across eccentricities, retinal position, and local stimulus
spatial frequency (although others have found some
variation in bandwidth with respect to these variables,
this study focuses on peak spatial frequency tuning and
we do not include extra flexibilty in model bandwidth,
in order to avoid overfitting). We assume functional
forms for the dependencies of parameters p and A on
retinal position, local stimulus spatial frequency, and
local stimulus orientation. First, we parameterize the
effect of eccentricity, fitting the preferred period as an
affine function of a voxel’s eccentricity rv: pv = arv + b.
We assume that this baseline dependency is modulated
by effects of retinotopic angle and stimulus orientation,
both of which are known to affect visual perception
(Williams et al., 1981; Heeley & Timney, 1988; Barbot
et al., 2021). Specifically, we express the preferred period
as:

pv = [arv + b][1 + p1 cos(2θl ) + p2 cos(4θl )
+ p3 cos(2(θl − θv ))
+ p4 cos(4(θl − θv ))]. (6)

The parameters pi have the following interpretations:

(1) p1: absolute cardinal effect, horizontal versus
vertical. A positive p1 means that voxels have
a higher preferred period for vertical than for
horizontal stimuli.

(2) p2: absolute cardinals versus obliques effect,
horizontal/vertical versus diagonals. A positive p2
means that voxels have a higher preferred period for
cardinal than for oblique stimuli.

(3) p3: relative cardinal effect, annuli versus pinwheels. A
positive p3 means that voxels have a higher preferred
period for annular than for pinwheel stimuli.

(4) p4: relative cardinals versus obliques effect,
annuli/pinwheels versus spirals. A positive p4 means
that voxels have a higher preferred period for annuli
and pinwheels than for spirals.

p1 and p2 have effects in the absolute reference frame
because they only depend on θl , the orientation in
absolute terms, whereas p3 and p4 additionally depend
on θv and thus have effects in the relative reference
frame.
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Figure 4. (A) Local stimulus parameterization for the two-dimensional model. The model is a function of four variables, two related to
voxel PRF location and two related to stimulus properties. rv and θv specify the eccentricity (in degrees) and the retinotopic angle of
the location of the center of the voxel’s PRF, relative to the fovea. ωl and θl , specify the local spatial frequency (in cycles per degree)
and the local orientation (in radians, counterclockwise relative to horizontal) of the stimulus, at the center of that voxel’s PRF (dashed
line). (B) Schematic showing the effects of pi parameters on preferred period as a function of retinotopic angle at a single eccentricity
for the four main stimulus types used in this experiment. When p1 > p2 > 0 (and p3 = p4 = 0), the effect of orientation on
preferred period is in the absolute reference frame only, that is, preferred period only depends on absolute orientation (e.g., vertical
or horizontal). In this plot, preferred period varies with retinotopic angle because the absolute orientation of our stimuli vary with
retinotopic angle (for another example, see Figure 10, where the relative amplitude effect is also only in the absolute reference
frame; thus the relative amplitude is always higher for vertical than horizontal stimuli). When p3 > p4 > 0 (and p1 = p2 = 0), the
effect of orientation is in the relative reference frame only, and annulus stimuli will always have the highest preferred period. Finally,
when all pi �= 0, the effects are mixed.

To illustrate these effects, we show tuning functions
for several stimulus classes given a few possible
parameter combinations (Figure 4B). We also provide
an interactive tool that enables the user to set arbitrary
values for all parameters and to probe how the
parameter settings influence the pattern of responses to
various stimulus types.

We also express the gain of the BOLD responses
as a function of voxel retinotopic angle and stimulus
orientation (without the eccentricity-dependent base
term):

Av = (1 + A1 cos(2θl ) + A2 cos(4θl )
+ A3 cos(2(θl − θv ))
+ A4 cos(4(θl − θv ))). (7)

This parameterization allows the amplitude to vary
depending on both absolute stimulus orientation (θl ),
and stimulus orientation relative to retinotopic angle
(θl − θv), but not on absolute retinotopic location.
This choice is premised on the fact that voxel-to-voxel
variation in the amplitude of the BOLD signal depends
in part on factors that are not neural. For example,
BOLD amplitude is influenced by draining veins (Lee
et al., 1995; Kay et al., 2019) and the orientation of the
gray matter surface relative to the instrument magnetic
field (Gagnon et al., 2015), as well as other factors not
directly related to neural responses.

In addition, the model cannot capture categorical
differences across the visual field, for example, between

upper and lower, or foveal and parafoveal visual
field, except insofar as the parametric forms allow
(linear function of eccentricity, harmonics of stimulus
orientation).

Model fitting

We fit the two-dimensional model to all V1 voxels
simultaneously, excluding voxels whose pRF center lies
outside the stimulus, those whose pRF center lies within
one standard deviation of the stimulus border, and
those with an average negative response to our stimuli.
Voxels with negative responses but whose pRFs are
centered within the stimulus extent are likely dominated
by artifacts such as those arising from draining veins
(Lee et al., 1995; Winawer et al., 2010).

The remaining voxels vary widely in their signal to
noise ratio. Typically in fMRI analyses, all voxels whose
noise level lies above some threshold are excluded
from the analysis. Here, we instead weight each
voxels’ loss by its precision, so that noisier voxels will
contribute less to the parameter estimates. Specifically,
we use a normalized mean-squared error loss over
voxels:

Lv(βv, β̂v ) = 1
σ 2

v

n∑
i=1

1
n

(
βiv

||βv||2 − β̂iv

||β̂v||2

)2

, (8)
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where i indexes the n different stimulus classes, βiv is
the response of voxel v (estimated using GLMdenoise)
to stimulus class i, β̂iv is the response to stimulus class
i predicted by our model, ||βv||2 is the L2-norm of
βv (across all stimulus classes), and σ 2

v is the variance
of voxel v’s response (that is, σ 2

v = 1
n
∑n

i=1 σ 2
vi, where

σvi is one-half of the 68 percentile range of the
response of voxel v to stimulus class i, as estimated by
GLMdenoise). This loss function is equivalent to the
cosine between response vectors βv and β̂v multiplied
by 2

nσ 2
v
. Normalization of the βv and β̂v vectors allows

the fitting to be agnostic to variations in absolute
response amplitude, capturing the response dependency
on stimulus and retinal location.

We minimize the average of this loss across all
appropriate voxels, using custom code written in
PyTorch (Paszke et al., 2019) and using the AMSGrad
variant of the Adam optimization algorithm (Kingma
& Ba, 2014; Reddi et al., 2019). To assess model
accuracy, we use 12-fold cross-validation (see Model
selection). Specifically, we fit the model to 44 of the 48
stimulus classes, then get predictions for the 4 held-out
classes. We do this for each of the 12 subsets, which get
us a complete β̂v that we can compare against βv.

Software

Data analysis, modeling, and figure creation were
done using a variety of custom scripts written in
Python 3.6.3 (Van Rossum & Drake, 2009), all found
in the software repository associated with this paper.
The following packages were used: snakemake (Mölder
et al., 2021), Jupyter Lab (Kluyver et al., 2016), numpy
(Array programming with NumPy, 2020), matplotlib

(Hunter, 2007), scipy (Virtanen et al., 2020), seaborn
(Waskom, 2021), pandas (Wes McKinney, 2010; pandas
development team, 2020), nipype (Gorgolewski et al.,
2011, 2018), nibabel (Brett et al., 2020), scikit-learn
(Pedregosa et al., 2011), neuropythy (Benson &
Winawer, 2018), pytorch (Paszke et al., 2019), psychopy
(Peirce et al., 2019b), FSL (Smith et al., 2004), freesurfer
(Dale et al., 1999), vistasoft, and GLMdenoise (Kay
et al., 2013a).

Results

One-dimensional analysis

We start by analyzing the data as a function of spatial
frequency alone (i.e., averaging over orientation), which
requires fewer assumptions and is easier to visualize. We
fit log-normal tuning curves to averaged voxel responses
at each eccentricity for each of the four main stimulus
classes. The log-normal function provides a reasonably
good fit to the data (see Figure 5).

We then combined the preferred periods across
subjects by bootstrapping a precision-weighted mean:
for each eccentricity and stimulus class, we selected 12
subjects at random with replacement, multiplied each
subject’s median preferred period by the precision of
that estimate, and averaged the resulting values:

p =
∑12

s=1
p̃s
σ 2
s∑12

s=1
1
σ 2
s

, (9)

where p̃s is the median preferred period value for
subject s and σs is the difference between the 16th and
84th percentile for that subject. This bootstrapping

Figure 5. Example data and best-fitting log-normal tuning curves for responses of one subject (sub-01) to pinwheel (left) and annular
(right) stimuli. The solid line and filled circles correspond with 9° to 10° eccentricity, whereas the dashed line and empty circles
correspond with 2° to 3°.
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Figure 6. Spatial frequency tuning. (A) Preferred period of tuning curves (parameter pb in Equation (9), n = 12), as functions of
eccentricity, fit separately for the four different stimulus classes. Points and vertical bars indicate the median and 68% confidence
intervals obtained from bootstraps combining subjects using a precision-weighted average (see text). Lines are the best linear fits.
(B) Full-width half-maximum (in octaves) of tuning curves, as functions of eccentricity, fit separately for the four different stimulus
classes. Points and vertical bars indicate the median and 68% confidence intervals obtained from bootstraps combining subjects using
a precision-weighted average (see text). Lines are the best linear fits.

is done 100 times to obtain median values and 68%
confidence intervals displayed in Figure 6A. The
precision-weighted average has the virtue of giving
more weight to better parameter estimates while not
fully discarding data.

The preferred period for each stimulus class is
well-described as an affine function of eccentricity, with
a positive offset. Thus, the spatial frequency preferences
of V1 do not scale perfectly with eccentricity (e.g.,
the preferred frequency at 4° is not one-half that of
2°). There is also a noticeable dependence on stimulus
orientation, with the annular stimuli exhibiting a larger
preferred period than the other three stimuli at each
eccentricity. Differences between the other stimulus
types are more subtle, but perhaps indicate a slightly
reduced slope for the two spiral stimuli relative to the
pinwheel.

We do the same precision-weighted bootstrapping
process for the full-width half-maximum (in octaves) of
the tuning curves shown in Figure 6B. We can see that
the full-width half-maximum is mostly constant across
eccentricities, except for some larger, noisier values
for the most foveal voxels. We believe this apparent
dip is due to how the fits are constrained, rather than
a real decline in tuning curve width; as can be seen in
Figure 8A, the presented frequencies shift from the
right of the tuning curve to the left for more peripheral
voxels. In the periphery and the fovea, where most of
the presented frequencies fall on one side of the curve,
the width is unlikely to be well-constrained, resulting
in the higher error bars seen in Figure 6B. Full-width
half-maximum additionally seems to be consistent
across stimulus types.

Two-dimensional model

The one-dimensional model provides a useful but
limited overview of spatial frequency selectivity. In
particular, we have treated the four stimulus classes
as discrete categories, rather than members of a
continuum over relative orientation. Moreover, this
analysis conflates the effects of absolute orientation
(relative to a global vertical/horizontal coordinate
system) and orientation relative to a voxel’s retinotopic
angle. These might be systematically different, and
because there are more voxels at some retinotopic
angles than others (e.g., Silva et al., 2018; Benson et al.,
2021), the averaging might cause systematic biases in
the summary measures. Finally, the analysis examines
peak spatial frequency tuning but does not examine
possible differences in BOLD amplitude for different
stimulus orientations.

The two-dimensional model described in section
Two-dimensional tuning curves allows us to more
directly and comprehensively assess how spatial
frequency tuning varies across the visual field. Instead
of binning voxels by eccentricity, we fit all voxels
simultaneously, with each voxel’s contribution to the
loss function weighted by the precision of its responses.
By fitting each voxel, we can tease apart the effects of
absolute and relative orientation (Figure 4B). We are
able to parameterize these effects on both preferred
period and gain. Finally, the fitted model will generate
predictions for the response of any voxel in the visual
field to any spatial frequency and orientation (although
its predictions will likely decrease in accuracy the
farther the voxel’s retinotopic location and stimulus
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Figure 7. Nested model comparison via cross-validation. (A) Fourteen different submodels are compared to determine which of the
11 parameters, as defined in Equations (4), (6), and (7), are necessary. Model parameters are grouped by whether they affect the
period or the gain, and whether their effect relates to eccentricity, absolute orientation, or relative orientation. Filled color boxes
indicate parameter subset used for each submodel. (B) Cross-validated loss for each submodel. Models are fit to each subject
separately, using 12-fold cross-validation (each fold leaves out 4 random stimuli). The quality of fit varies across subjects, so to
combine subjects and view the effect of model, we subtract each subject’s mean loss across models, then add back the average loss
across subjects and models. Bars show the 68% confidence intervals from bootstrapped mean across subjects.

properties move from the those included in this
study).

Model selection
The full two-dimensional model has 11 parameters,

and we used cross-validation to determine which
are necessary to explain the data in V1. Omitting or
including all combinations of parameters would yield
211 possible models. To reduce this, we grouped the
parameters into several small sets, based on whether
they affect the preferred period or gain and whether
their effect is determined by eccentricity, relative
orientation, or absolute orientation. For example, p1
and p2 both affect the preferred period as a function
of absolute orientation and so are always both present
or both absent. Moreover, we only tested parameter
combinations that we considered plausible; for example,
we do not test relative preferred period and absolute
gain. Figure 7A shows the 14 candidate submodels
considered. When fitting model 8, for example, the
parameters σ, a, b, p1, p2,A1, and A2 are all fit, whereas
p3, p4,A3,A4 are set to 0; this practice corresponds
with modeling the preferred period as a linear function
of eccentricity, modulated by absolute orientation,
and modeling the gain as also modulated by absolute
orientation.

Submodels are fit per subject, with 12-fold
cross-validation, withholding four random stimuli
from fitting on each fold, using the same partitions
across models and subjects. After training, predictions
are generated for these four stimuli, and the subject’s
cross-validation loss for the model is computed across
all of the held-out data (12 fold). Cross-validation loss
varies greatly across subjects, dependent on the subject’s
signal to noise ratio. To combine across subjects, we
normalize the data by subtracting each subject’s mean
cross-validation loss across models. For visualization,
we then add back the average loss across subjects.
Figure 7B shows the median cross-validation loss and
68% confidence intervals of these losses. For some rows,
two models are shown: the model with and without
fitting parameters A3 and A4. (The variant that fits
those parameters is shown in the desaturated color.) The
results indicate that 9 of the 11 parameters contribute
to accurately predicting responses. By fitting each of
the 14 candidate models to each subject individually, we
find that all parameter groupings improve performance
except for A3 and A4: the loss is greater whenever those
two are included.

Comparing the losses of models 1, 2, and 3 reveals the
importance of the two parameters relating eccentricity
to preferred period: while a line through the origin
(model 2) captures the data better than a constant value
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Figure 8. (A) Three example voxels from a single subject (sub-01). Blue points indicate the median voxel responses across bootstraps.
Error bars indicate variation as a function of orientation. Orange line shows model 9’s predictions, in both cases as a function of the
local spatial frequency at the center of each voxel’s pRF. (B) Responses of all voxels across all subjects as two-dimensional histogram.
For each voxel and stimulus orientation, responses are plotted as a function of spatial frequency, relative to peak spatial frequency.
Orange line shows model 9’s predictions.

(model 1), the performance increases substantially with
an affine model using both terms (model 3). In sum,
both parameters a and b are required to accurately
explain the data, and preferred period increases linearly
with eccentricity with a non-zero intercept.

Beyond eccentricity, the effect of orientation on
preferred period does not change performance much
unless one also adds the effect on gain (models 4
through 6 all have similar performance). The effect of
relative orientation on gain by itself has a negative
effect on performance, as can be seen by comparing
the saturated and desaturated points for models 3, 5,
6, 7, and 9. Absolute orientation, on the other hand,
improves performance, as can be seen by comparing 6
and 9, 4 and 8, or 3 and 7. Therefore, for the remainder
of this paper, we use the saturated point of model
9, which has the lowest cross-validation loss and fits
all preferred period parameters, pk, as well as those
that capture the effect of absolute orientation on
gain.

Spatial frequency tuning across stimulus orientation and
visual field positions

Having selected model 9, we then re-fit it to each
subject without cross-validation. Specifically, we
fit model 9 to each of 100 bootstraps from each
subject separately, giving us 100 estimates of each
model parameter per subject. Figure 8A shows three
example voxels’ median responses and model 9’s
median predictions, as a function of local spatial
frequency, from one subject. As expected, the peak of
the spatial frequency tuning function decreases with
increasing eccentricity. The bandwidth (in octaves) is
comparable across eccentricities, and the plots indicate

that the stimuli sampled the local spatial frequencies
appropriately at each eccentricity.

Overall, the log-Gaussian tuning function provided
a good fit to the complete dataset. Figure 8B shows
the responses of all voxels, across all subjects, as a
two-dimensional histogram, aligned to the peak spatial
frequency per voxel, plotted together with the model’s
predictions. We can see the responses are symmetric
about the peak, demonstrating that a log-Gaussian (as
opposed to a linear Gaussian) function is the better
choice. The responses do seem to deviate slightly from
the model tuning curve: slightly flatter at the peak and
falling faster away from it. A larger exponent could
potentially improve the fit, for example, exp(− log2(x)4)
instead of exp(− log2(x)2). However, such a change will
not have a large effect on the estimates of preferred
spatial frequency, which is the primary focus of this
article.

To consolidate our findings, we combine the
model parameters across subjects by bootstrapping a
precision-weighted mean. For each parameter, we select
12 subjects with replacement, multiply each subject’s
median parameter estimate by the precision of their
response amplitudes (as estimated by GLMdenoise)
averaged over all fit voxels, and average the resulting
values. We then take this set of parameters and generate
a set of predictions for the preferred period and gain
across eccentricities and retinotopic angles, as well
as for different stimulus classes (which determine the
orientation seen by each voxel). We do this 100 times,
plot the resulting median and 68% confidence interval
predictions in Figure 10, and plot the resulting median
and 68% confidence interval for the parameter values
in Figure 9. We observe five distinct properties of the
fitted functions:
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Figure 9. Parameter values (A) combined across all subjects and (B) in individual subjects. In both panels, median values ± 68%
bootstrapped confidence intervals are plotted (note that A3 and A4 have been omitted, as determined from the previous model
selection analysis). (A) Parameter values obtained by bootstrapping parameter values across subjects from fits to the individual
subject. A precision-weighted average is computed from each bootstrap. (B) Individual subject parameter values, bootstrapped across
scans (as computed by GLMdenoise). A csv file containing these values (and instructions for use) can be found in the
project software repository.

Preferred period is an affine function of eccentricity.
Specifically, the preferred period, as a function of
eccentricity, is well approximated by a line with a
significantly non-zero intercept. As discussed in the

Introduction, the preferred period cannot decrease to
zero at the fovea, because this would imply an infinite
preferred spatial frequency. However, our stimuli do
not include the region around the fovea, and thus our
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Figure 10. Spatial frequency preferences across the visual field in (A) relative and (B) absolute reference frames. In both panels, the
left shows the preferred period as a function of eccentricity, top right shows the preferred period as a function of retinotopic angle at
an eccentricity of 5°, and bottom right shows the relative gain as a function of retinotopic angle (which does not depend on
eccentricity; note that this relative gain does not change across voxels, only within a given voxel for different orientations). Only the
extremal periods are shown in the left plot, for clarity (the others lie between the two plotted lines), and the cardinals and obliques
are similarly plotted separately in the right plot for clarity. The predictions come from the model with parameter values shown in
Figure 9A, with the lines showing predictions from the median parameter and shaded region covering the 68% confidence interval.
Those parameters result from bootstrapping a precision-weighted average to combine the parameters from each subject’s individual
fit with this model. Compare left plot in panel (A) to Figure 6B.

data do not constrain frequency tuning in that region.
As such, the fitting procedure could potentially have
arrived at an intercept of zero, supporting a “hinged
line” model in which the preferred period decreases
linearly with decreasing eccentricity and levels out
at some minimal value, as proposed in Freeman and
Simoncelli (2011).

Preferred period is largest for annular stimuli. As
also seen in the 1D analysis (section One-dimensional
analysis), the annular stimuli have the highest preferred
period at each eccentricity (Figure 10A, left). Unlike
in the one-dimensional analysis, we can now see
that the difference between the annuli and pinwheel
stimuli varies as a function of retinotopic angle, with
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the greatest difference at the horizontal meridian,
decreasing to almost 0 by the vertical meridian
(Figure 10A, top right). At the horizontal meridian,
the median preferred period is 1.06 for annuli and 0.80
for pinwheels. This difference as a function of stimulus
angle is equivalent to about 2° of eccentricity at a
constant stimulus orientation.

Preferred period is largest for vertical stimuli. A
similar pattern is seen for the model predictions for
horizontal and vertical stimuli, in which there is an
overall difference, modulated by retinotopic angle
(Figure 10B): The difference between their preferred
periods reaches its maximal value at the horizontal
meridian and decreases to almost 0 by the vertical
meridian. This dependency between the preferred
period effect and retinotopic angle comes from the
combination of the vertical and annular biases: at the
horizontal meridian, both go in the same direction (i.e.,
a vertical stimulus is an annular stimulus) and thus the
gap in preferred period between vertical/annulus stimuli
and horizontal/pinwheel stimuli is large. At the vertical
meridian, in contract, they oppose each other (i.e., a
vertical stimulus is a pinwheel stimulus), and, because
the size of the two effects is roughly equal, the gap in
preferred period between vertical/pinwheel stimuli and
horizontal/annulus stimuli is small.

Gain is greatest for vertical stimuli. The effect of
stimulus orientation on gain is smaller than the effect on
preferred period, but more consistent across subjects.
According to the model fits, vertical orientations evoke
the largest BOLD signal (highest gain) and horizontal
orientations the lowest. The two diagonal orientations
are intermediate. The forward and reverse diagonal
stimuli do not differ in gain because model 9 does not fit
parameters A3 or A4, which would differentiate them.
The gain for annuli and pinwheels varies as a function
of retinotopic angle, based on where they align with the
absolute orientation. Thus, the annuli have the highest
gain on the horizontal meridian (where their absolute
orientation is vertical), the pinwheels have the highest
gain on the vertical meridian (where their absolute
orientation is vertical), and the spirals have the highest
gain on their respective diagonals.

Spatial frequency tuning is broad. By examining
Figure 9A, we see that the standard deviation (σ ) of our
model is about 2.2 octaves, equivalent to a full-width
half-max of 5.1 octaves. (The variability in the estimate
comes from bootstrapping across subjects and across
runs, not from variation across voxels or stimulus
orientation, neither of which we modeled.) The 2.2
octave standard deviation of the tuning function is
large relative to the variation in peak tuning across the
V1 map. For example, the difference in preferred period
between a foveal voxel (0° eccentricity, 0.35° period)
and a 10° voxel (about 1.6° period) is equivalent to 1
standard deviation of the foveal voxel’s tuning function
(2.2 octaves).

Preferred period is uncorrelated with V1 surface area
We observed substantial differences in the preferred

period across subjects. For example, at 6° eccentricity,
preferred period ranges from 0.78 to 1.49° across
our 12 subjects. A natural question is whether our
measured preferred period is related to other functional
or anatomical measures in V1. We motivated our
initial scaling hypothesis by presenting the idea that the
preferred spatial frequency may be a constant number
of periods per PRF, and thus should drop as pRF
size increases. Could the variability in pRF size across
subjects account for the variability we see in preferred
period? Estimated pRF size is far less reliable than pRF
location, and so instead we compare preferred period
to V1 surface area, which gives more robust estimates
(Himmelberg et al., 2021; Lerma-Usabiaga et al., 2021).
The results can be seen in supplement Figure S1,
comparing the preferred period at 6° of eccentricity
with the total V1 surface area across participants. Both
values span a range of 2:1, but they are essentially
uncorrelated with each other (R2: median−3.42 × 10−3,
68% confidence interval: [−2.84 × 10−1, 9.75 × 10−2]).

Effect of retinotopic angle
To keep the model parameterization tractable, we

excluded effects of retinotopic angle on preferred
spatial frequency (except as mediated via relative
stimulus orientation). To get a sense for whether
retinotopic angle alone has additional explanatory
power in our dataset, we fit model 3 (p = arv + b, no
effect of stimulus orientation and no modulation of
gain) to the median BOLD response estimates on the
quarters of the visual field around the two horizontal
meridians (θv ∈ [0, π/4] ∪ (3π/4, 5π/4] ∪ (7π/4, 2π ]),
and the quarters of the visual field around the two
vertical meridians (θv ∈ (π/4, 3π/4] ∪ (5π/4, 7π/4]).
The bootstrapped average across subjects of the
preferred period as a function of eccentricity for
these two variants is shown in Figure S2A. We can
see that the model fit to voxels near the horizontal
meridians has a higher preferred period near the fovea
and a lower preferred period in the periphery, with
the two meridian-only variants crossing at around 3
degrees. The error bars in that figure represent both
the within-subject difference between the two variants
and the between-subject differences in preferred
period; Figure S2B shows the difference between the
two variants, calculated within subjects and then
bootstrapped across them. This effect is clearly reliable
across subjects, and the difference of approximately
−0.27 at 11° is about 16% of the average preferred
period there. Because our stimuli are balanced across
relative stimulus orientations, this finding suggests that
there is an effect of retinotopic angle alone on spatial
frequency tuning, though further characterization is
needed.

Downloaded from hwmaint.iovs.org on 04/25/2024



Journal of Vision (2022) 22(4):3, 1–21 Broderick, Simoncelli, & Winawer 15

Discussion

We have used a set of log-polar grating stimuli
to efficiently estimate spatial frequency preference
in fMRI voxels of human V1. We quantified the
effects of eccentricity, retinotopic angle, and stimulus
orientation on voxel preferred period and response
gain. As expected, the strongest relationship is the
dependency on eccentricity: on average—across
stimulus orientation, retinotopic angle, and subject—
the preferred period is an affine function of eccentricity,
which grows with a slope of about 0.12° per degree of
eccentricity and an intercept of about 0.35° at the fovea.
The preferred period is also modulated systematically by
both stimulus orientation and retinotopic angle. Along
the horizontal meridian, the increase in preferred period
from horizontal to vertical stimuli (or, equivalently,
from annular to pinwheel stimuli) is roughly equivalent
to that seen when increasing eccentricity by 2°.
On the vertical meridian, preferred periods of
horizontal/vertical stimuli are indistinguishable. The
response gain also exhibited small but systematic
variations with stimulus orientation. Horizontal stimuli
have an approximately 8% smaller response gain than
vertical stimuli throughout the visual field.

Strengths

Our results are obtained using a multivariate,
stimulus-referred model. Typically, stimulus-referred
modeling of fMRI signals either fits each voxel
independently (voxel-wise modeling) or fits average
responses across regions. Voxel-wise modeling (e.g., Kay
et al., 2008) has the flexibility of allowing researchers
to place few or no constraints on the relationship of
models across voxels. This flexibility comes with high
parameter dimensionality; even a single visual area like
V1, would typically require thousands of parameters,
which can result in high noise sensitivity and lack of
interpretability. Fitting models to regions of interest
rather than voxels (e.g., Boynton et al., 1996) decreases
dimensionality, but loses cortical (and thus, retinotopic)
resolution. Our method combines positive aspects
of both approaches: it is sensitive to variability in
the response properties across voxels, while placing
constraints on how the parameters relate to each other
across voxels to generate a useful and interpretable
summary.

An advantage of the stimulus-referenced modeling
approach is generalization. A two-dimensional model
of spatial frequency tuning is likely to simplify
development of a more complete image-computable
model of the visual cortex. Some image-computable
models fit to fMRI or electrocorticography responses
operate only on band-pass filtered images because
they do not incorporate spatial frequency tuning (e.g.,

Kay et al., 2013b; Kay & Yeatman, 2017; Hermes
et al., 2019). The stimuli were band passed in these
experiments to reduce the complexity of the image
space. There have been some attempts to generalize
models across scale but these have not been informed
by a comprehensive set of measurements or models of
spatial frequency tuning (Benson et al., 2017; Olman
et al., 2017). A further advantage of the multivariate
parametric approach is that it helps to decrease bias
from skewed voxel sampling. For example, there are
fewer voxels near the vertical than near the horizontal
meridian (Benson et al., 2021). In a voxel-wise fitting
approach, preferences of voxels near the vertical
meridian might be poorly fit or not fit at all (if no
voxels have pRF centers along the meridian). Here, the
parametric approach uses all the data to estimate each
parameter, allowing better estimates for locations with
limited data. Finally, a parametric model facilitates
comparison across studies, as other measurements
of spatial frequency tuning might not sample the
identical orientations, spatial frequencies, and visual
field locations.

Limitations

Our modeling approach has at least two important
limitations. First, the characterization of the V1 maps
is based on fMRI measurements, which combine
the integration of the fMRI measurement (blood
oxygenation within voxels) and the selectivity of those
neurons linked to the changes in blood oxygenation.
Some aspects of our results, such as the substantial
additive offset at the fovea, may be particularly
affected by these additional sources of integration.
Comprehensive measures of spatial tuning across the
entire map at the level of individual neurons do not
exist. Models that explicitly account for both tuning of
individual neurons and measurement pooling functions,
such as Haak et al. (2012); Keliris et al. (2019) will be
important for clarifying the relative contributions of
these sources.

Second, our analysis assumes that, for each voxel and
each stimulus, there is a single spatial frequency and
orientation driving the response. Because both stimuli
properties varied continuously across our images, this
use of the instantaneous frequency approximation is
only valid locally. We think the effects are likely small
because the V1 receptive fields are relatively small
and our stimulus properties varied gradually. In later
stages of the visual system, where receptive fields are
substantially larger, this use of instantaneous frequency
will become an increasingly worse approximation to the
range of spatial frequencies within the receptive fields.

Finally, residual eye movements (microsaccades)
could affect our results by increasing the positional
uncertainty of the stimuli, or by effectively blurring
them due to temporal integration. We think these
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Figure 11. Comparison with previously reported eccentricity dependence of spatial frequency measured with fMRI. All results show
the preferred period at that eccentricity in V1 (all papers reported preferred spatial frequency; the reciprocal of that is shown). All
values were estimated from published figures and are thus approximate. Black line represents our result, averaged across stimulus
orientation and retinotopic angle, with line showing the median and shaded region the 68% confidence interval from
precision-weighted bootstrap across subjects, as in Figure 10.

effects are likely to be small (see Supplement section
1.2 for more discussion), but we cannot entirely rule
them out.

Related fMRI studies

A number of previous studies have reported spatial
frequency preferences at multiple eccentricities in
human V1 using fMRI. A comparison of those findings
shows a wide range of estimates (Figure 11; Sasaki et al.,
2001; Henriksson et al., 2008; Kay, 2011; D’Souza et al.,
2016; Farivar et al., 2017; Aghajari et al., 2020). With
the exception of Aghajari et al. (2020) and Henriksson
et al. (2008), these studies did not pursue the question
of V1 spatial frequency tuning as their main question.
All studies agree that preferred period grows as an
affine function of eccentricity, but the exact values for
the slope and intercept vary widely. Overall, our results
are most consistent with those of Aghajari et al. (2020).
These studies fit tuning curves to different voxels or
bands of voxels and plotted the peak as a function of
eccentricity (sometimes, as in Aghajari et al. (2020), also
separately plotting this for different quadrants of the
visual field), similar to our one-dimensional fits shown
in Figure 6A. The variability across studies could be
due to many factors, including display calibration,
analysis methods, the temporal frequency of the
stimulus presentation, and the wide variety of spatial
patterns used, from natural images in Kay (2011) to
phase-scrambled noise in Farivar et al. (2017) to plaids
in Hess et al. (2009). Resolving the discrepancies may
require use of multiple stimulus classes and analysis
methods in the same study.

Our two-dimensional model assumes a constant
bandwidth in octaves. Aghajari et al. (2020) investigate
the bandwidth of voxel spatial frequency tuning in

more detail, concluding that it grows at a constant
rate from approximately 3 octaves near the fovea
to about 4.3 octaves at 9°. Our model, like theirs,
assumes a log-Gaussian tuning curve (Figure 8B),
but our bandwidth estimate of five octaves is larger
than any of the values they observe in V1. We see no
obvious explanation for the discrepancy. De Valois
et al. (1982) measure the spatial frequency bandwidth
in macaque V1 simple and complex cells at multiple
retinotopic locations and find a median bandwidth of
approximately 1.5 octaves (similar across cell types
and locations); they also show a negative correlation
between peak spatial frequency tuning and spatial
frequency bandwidth, with some low-pass neurons
having a bandwidth of up to 3.25 octaves. Because
neurons with a variety of spatial frequency tunings are
found at any given retinotopic location, it is expected
that V1 voxels would exhibit broader tuning than
individual V1 neurons. This parallels findings in spatial
receptive fields, which show larger sizes when measured
for voxels with fMRI than measured in single units
(Dumoulin & Wandell, 2008; Keliris et al., 2019).

Orientation tuning

There has been a long debate in the literature about
whether orientation tuning is detectable in the BOLD
signal on the spatial scale of voxels and, if so, what
that means (Kamitani & Tong, 2005; Freeman et al.,
2013; Carlson, 2014; Roth et al., 2018). Our model is
recovering some degree of orientation tuning: with
non-zero A1 and A2 values, response varies sinusoidally
as a function of orientation. More specifically, we find
an overall bias for vertical gratings. Freeman et al.
(2013) found a mix of vertical bias near the fovea and
a radial bias (e.g., voxels along the horizontal meridian
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preferring horizontal gratings) in the periphery.
Although our model agrees with the first finding, we
find no evidence for the second (although our model
does not allow for categorically distinct responses in
the fovea and periphery, and fitting them separately
may find some evidence for this, similar to the issue
of retinotopic angle, see Effect of retinotopic angle
and Figure S2). However, we hesitate to interpret these
results too strongly; as Carlson (2014) and Roth et al.
(2018) point out, orientation biases can be induced in
the BOLD response by the stimulus presentation even
with unbiased underlying neuronal responses. Further
work is needed to tease out the source and implication
of orientation tuning.

Scale and rotation invariance

An idealized model of visual system organization
is that spatial frequency tuning (preferred period) is
proportional to eccentricity, while being independent
of polar angle and stimulus orientation. For example,
the log-polar model of the warping of the visual field
onto the V1 cortical surface by Schwartz (1980) has
these properties. The scaling with eccentricity has
been proposed by Schwartz and others (Van Essen &
Anderson, 1995) to endow the system with invariance
to dilation and rotation (for transformations centered
at the fovea), enabling perceptual generalization (but
see Cavanagh, 1982, for a different interpretation). Our
model fits show systematic deviations from each of
these three properties.

First, we find that preferred period grows as an affine
function of eccentricity, with a non-zero intercept.
Independent of any measurements, one would not
expect basic properties such as receptive field size to
grow proportional to eccentricity due to limits at the
fovea (the optics and cone apertures set upper bounds
on resolution.) One simple correction to the idealized
scaling model is adding an offset, or affine transform,
as we’ve done here. This is consistent with some models
of cortical magnification in V1 (Horton & Hoyt, 1991;
Benson & Winawer, 2018). An alternative model form
is piece-wise linear (e.g., a “hinged line”), that is flat
in the vicinity of the fovea, and grows proportional
to eccentricity beyond that (as used by Freeman &
Simoncelli, 2011, to describe ventral stream receptive
fields). This allows scale invariance outside the flat,
foveal region. Our data are better fit by an affine
function than a hinged line. The effect is relatively large:
the offset at the fovea (preferred period of 0.35°) is
equivalent to the difference in preferred period between
0° and 3° eccentricity. A substantial offset implies that
the human V1 representation in the center of the visual
field does not approximate a scaling rule, as also noted
by Cavanagh (1982). Given the importance of foveal
vision for object recognition, the deviation from an

idealized scaling rule at the fovea may have important
implications for perception. Size judgments are in fact
not invariant to eccentricity (Newsome, 1972) and
have been shown to track individual differences in the
topography of V1 (Moutsiana et al., 2016).

Second, we show spatial frequency tuning depends
on orientation at the horizontal meridian, but not at
the vertical meridian (see Figure 10, right panel). This
is because the preferred period tuning for absolute
orientation (vertical > horizontal) and for relative
orientation (annuli > pinwheels) add for locations on
the horizontal meridian, but cancel for locations at
the vertical. In separate analyses, we also observed an
overall higher peak spatial frequency for visual field
quadrants near the horizontal meridian than the vertical
outside of the central 3°, consistent with Aghajari
et al. (2020). These results suggest that the quality of
spatial representation will depend on polar angle. This
is consistent with a large body of psychophysical results
showing that performance on various tasks, including
spatial resolution and contrast sensitivity, depend on
stimulus polar angle, with better performance along
the horizontal meridian than the vertical meridian and
better performance along the lower vertical meridian
than the upper vertical meridian (see Himmelberg et al.,
2020, and the citations therein).

Finally, we show an overall annular bias in preferred
spatial frequency: for any location in the visual field, an
annular stimulus will have the lowest preferred spatial
frequency, this bias varies across retinotopic angle, and
increases with eccentricity. Few studies have examined
the combination of stimulus orientation and retinotopic
angle with sufficient resolution to determine whether an
orientation effect is relative or absolute. An exception is
Wilkinson et al. (2016), who used interference fringes
to examine sinusoidal grating acuity changes across
the visual field, and found that it is proportional to the
sampling of retinal ganglion cells everywhere in the
retina. Consistent with our study, they show that radial
acuity is always higher than tangential acuity, that this
effect is largest along the nasal horizontal meridian, and
that the minimum angle of resolution (0.5/cutoff spatial
frequency) grows roughly linearly with eccentricity.
All told, this suggests that many, but not all, of the
effects observed in the current study originate with the
sampling of the midget retinal ganglion cell lattice.

Keywords: spatial vision, spatial frequency,
eccentricity, fMRI, computational modeling
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Footnote
1David Hubel described the process of characterizing visual field maps
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