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Purpose: The incidenceof orbital blowout fractures (OBFs) is gradually increasingdue to
traffic accidents, sports injuries, and ocular trauma. Orbital computed tomography (CT)
is crucial for accurate clinical diagnosis. In this study, we built an artificial intelligence
(AI) systembasedon twoavailable deep learningnetworks (DenseNet-169 andUNet) for
fracture identification, fracture side distinguishment, and fracture area segmentation.

Methods: We established a database of orbital CT images and manually annotated
the fracture areas. DenseNet-169 was trained and evaluated on the identification of CT
images with OBFs. We also trained and evaluated DenseNet-169 and UNet for fracture
sidedistinguishment and fracture area segmentation.Weused cross-validation to evalu-
ate the performance of the AI algorithm after training.

Results: For fracture identification, DenseNet-169 achieved an area under the receiver
operating characteristic curve (AUC) of 0.9920 ± 0.0021, with an accuracy, sensitivity,
and specificity of 0.9693 ± 0.0028, 0.9717 ± 0.0143, and 0.9596 ± 0.0330, respectively.
DenseNet-169 realized the distinguishment of the fracture side with accuracy, sensitiv-
ity, specificity, andAUCof 0.9859±0.0059, 0.9743±0.0101, 0.9980±0.0041, and0.9923
± 0.0008, respectively. The intersection over union (IoU) andDice coefficient of UNet for
fracture area segmentation were 0.8180 ± 0.0093 and 0.8849 ± 0.0090, respectively,
showing a high agreement with manual segmentation.

Conclusions: The trained AI system could realize the automatic identification and
segmentation of OBFs, which might be a new tool for smart diagnoses and improved
efficiencies of three-dimensional (3D) printing-assisted surgical repair of OBFs.

Translational Relevance:Our AI system, based on two available deep learning network
models, could help in precise diagnoses and accurate surgical repairs.

Introduction

With the frequent occurrence of traffic and sports
accidents, the incidence of orbital blowout fractures
(OBFs) has gradually increased. OBFs often present as
ocular trauma in clinical settings1,2 and cause unbear-
able diplopia and enophthalmos. To alleviate these
symptoms, an accurate diagnosis and a precise surgi-
cal repair are key steps.3 A detailed evaluation of
orbital computed tomography (CT), a noninvasive
examination, is crucial for the diagnosis and surgi-
cal repair of OBFs, as it can precisely visualize the
fracture areas and entrapped soft tissue.4 The major

purpose of surgical repair for OBFs is to restore
the binocular single-vision function and improve the
altered appearance from the enophthalmos caused by
an enlarged orbital cavity. Therefore, anatomic reduc-
tion of the trapped soft tissue and precise repair of
the orbital defect area with artificial materials, such as
artificial bone and titanium mesh, are crucial in the
surgical treatment process.5 Meticulous pre-operative
planning based on a three-dimensional (3D) printed
orbital model is of marked necessity and assistance
for realizing the purpose of the surgical repair.6 In
addition, an appropriately designed implant template
based on the orbital model is very beneficial for the
surgery and minimizes the occurrence of postoperative
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complications. However, manually annotating fracture
areas to design an implant template or a 3D model
remains a time-consuming task even for experienced
clinicians.7 Thus, the automatic identification and
annotation of OBF areas based on artificial intelli-
gence (AI) may help simplify the pre-operative design
process and improve the accuracy and efficiency of
surgery.

AI imitates the thinking process of the human
brain by learning through experience via computer
algorithms and plays an active role in medical
diagnoses, such as automatically detecting diabetic
retinopathy and age-related macular degeneration
through fundus photography.8 Image segmentation
is one of the most widely used AI technologies in
medicine. Image segmentation refers to the pixel-
level classification of images to label target objects.
Moreover, it is useful for the full extraction of
anatomic structure information in medical images,
which can influence clinical decisionmaking.9 Recently,
Li et al. automatically detected CT images with
OBFs using a popular deep convolutional neural
network (DCNN) named InceptionV3 and achieved
an accuracy of 0.92. However, it could not automat-
ically locate the fracture areas depicted on the CT
images.10 Hamwood et al. constructed an AI model
for automatic segmentation of the bony orbit region
based on orbital CT and magnetic resonance imaging
(MRI) images.11 Zhu et al. analyzed the character-
istics of aging Asians with an AI-assisted segmen-
tation of orbital bony features.12 Some commer-
cial software packages may help segment the orbital
region based on CT images.13 However, these studies
focused on the segmentation of the normal orbit.
In addition, to the best of our knowledge, there are
no studies on the automatic segmentation of OBFs
yet.

In this study, we develop and evaluate a CT-based
AI system for the identification and segmentation of
OBFs, which has the potential to become a useful tool
for the smart diagnosis of OBFs and might improve
the precision and efficiency of 3D printing-assisted
repair.

Methods

This study adhered to the Declaration of
Helsinki principles and was approved by the
Ethics Review Committee of the Second Norman
Bethune Hospital of Jilin University. The require-
ment for informed consent was waived by the review
board.

Table 1. BaselineDemographic Characteristics of Each
Group

Demographic
Feature

Non-Fracture
Group Fracture Group

Number of patients 162 335
Men 65 201
Women 97 134

Age, in years
Mean ± standard

deviation
37.58 ± 18.60 40.47 ± 14.82

Range 3–81 10–82

Orbital CT Image Database

A total of 3016 orbital CT images (1997 fracture and
1019 non-fracture CT images) were obtained from the
Second Norman Bethune Hospital of Jilin University.
All patients were Asian, and the baseline demographic
characteristics are shown in Table 1. The fracture CT
images were from patients with monocular OBFs. For
the non-fracture group (total patients = 162 and total
images = 1019), we selected several consecutive CT
scans with complete bony walls for every patient. For
the fracture group (total patients= 335 and total image
= 1997), we selected continuous scans that showed the
fracture areas for each patient. The fracture and non-
fracture images were composed of dataset 1, which
was used for the training and evaluation of fracture
identifications. The fracture images were composed of
dataset 2 for the training and evaluation of fracture side
distinguishment and fracture area segmentation. The
CT images with fractures in the database were indepen-
dently judged by three experienced radiologists; the
diagnosis was established, and the fracture areas were
annotated when a consensus was reached. Another
senior physician was invited to determine and annotate
the fracture areas in the event of a disagreement among
the three physicians. The direct and indirect signs of
OBFs in the orbital CT images were annotated with
the online tool LabelMe. Direct signs of OBFs were
comprised of an interruption of the continuity of the
orbital wall and a change in the contour of the orbit.
The indirect signs included effusion in the adjacent
sinus cavities, thickening, swelling of the extraocu-
lar muscles, and entrapment of the orbital contents.
The fracture-type and side-specific distribution of CT
images in the fracture group are shown in Table 2.
To minimize the computational cost, the target region
from the orbit CT images was extracted automatically.
We used the Open CV technology to realize automat-
ically identify the region of interest (ROI) through
the template matching program. This program could
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Table 2. Fracture-Type and Side-Specific Distribution
of CT Images in the Fracture Group

Left
Eye

Right
Eye Total

Medial orbital wall fractures 493 416 909
Orbital floor fractures 457 338 795
Complex (two-walled) fractures 191 102 293
Total 1141 856 1997

CT, computed tomography.

mark a rectangular region of the orbital region and
extract the ROI. This procedure involved calculat-
ing the mean value of the target area after manual
cropping. Then, the mean value was used as a template
to realize automatic matching and cropping. Next, the
input images were processed to 224 × 224 pixels for the
training of DenseNet-169, and 128 × 256 pixels for the
training of UNet; the pixel values were normalized to
ensure that they ranged from 0 to 1.

In this study, we used random rotation (0 degrees to
359 degrees) as the method of data augmentation for
the training set in dataset 1. At the time of transforma-
tion, each image in dataset 1 was randomly rotated by
selecting an angle between 0 degrees and 359 degrees.
The training set was trained with 100 epochs, which
means each image experienced random rotations for
100 times. The transformed images were only used in
the current step and not stored.

To avoid data leakage, we divided the data with
patient labels to ensure that there was no patient
overlap between the training and test sets. Addition-
ally, k-fold cross-validation was used for the evalua-
tion of the post-trainedAI algorithm, whereby the data
were randomly divided into k = 5 folds. In one cross-
validation process, k-1 folds were used for training,
and the rest of the folds were used for validation. The
process was then repeated k times, using each of the
k folds for validation. Compared to simply splitting
the single dataset, cross-validation can effectively avoid
bias in the test process.

Network Models and Network Training

We implemented the automatic identification of
fracture images and the distinguishment of fracture
sides using DenseNet-169 with the pre-trained
ImageNet weight, and we used UNet for fracture
area segmentation.

The feature layers with each dense blockwere recon-
nected to fully engage the combination of the shallow
and deep features through DenseNet.14 Due to the

neural networks’ strong fitting abilities, the small scale
of the training set can easily cause overfitting. UNet
includes contracting (down-sampling) and expanding
paths (up-sampling). In the process of down-sampling,
a 3 × 3 valid convolution operation and rectified linear
unit (ReLU) activation were repeated twice to reduce
image resolution, and the key information was saved
with a 2× 2 maximum-pooling operation.15 After each
down-sampling, the layers of the image were increased,
and the size was compressed. The expansion path of
UNet gradually repaired the image details, precisely
located the lesion site, and restored the feature map
to the size of the input image. The expansion path
also contained four blocks, each containing 3 × 3
deconvolutions, and theReLU function. After each up-
sampling operation, the feature map size was doubled,
and the number of channels was halved. We divided
the dataset according to the 8:1:1 ratio of the train-
ing set: validation set: test set. The several candidate
parameters were selected through dynamic observation
of the validation set, and the appropriate hyperparam-
eters were further determined through the grid search
method. The learning rate was 0.1 at the beginning.
When it was observed that the accuracy was stable
in the validation set, the learning rate was reduced
gradually. Because of the size of the images in the
database, we used the filter with a small size (3 ×
3). The number of epochs was based on the dynamic
observation of the neural network training results. The
number of epochs was selected when we observed
the accuracy was stable over a period of time with
the number of epochs increasing. Then, we used the
grid search method to determine the hyperparame-
ters. Figure 1 shows the architectures of DenseNet-
169 and UNet. Table 3 shows the parameters of the
algorithms.

The training process was performed on the Xeon
E5-2630v3@2.40 GHz server. The original UNet
network model could not achieve effective segmenta-
tion of the fracture areas due to the irregular morphol-
ogy and high variability of the fracture areas. To
address this challenge, we created a new loss function
by adding a constraint referring to the strategy of
Srivastava to optimize the network.16

L = α ∗ log

(
−

N∑
i=1

[yi log (ŷi) + (1 − yi) log (1 − ŷi)]

)

+β ∗ 1
N

N∑
i=1

|(yi − ŷi)| (1)

The loss function of UNet is constructed as follows,
yi is the real label extracted from the manually labeled
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Figure 1. Architectures of DenseNet-169 and UNet. (A) DenseNet-169 included various convolutional layers. Each convolutional layer
contained the output of all the previous convolutional layers. (B) UNet was composed of contracting (down-sampling) and expanding paths
(up-sampling). In the process of down-sampling, 3× 3 valid convolution operation and rectified linear unit (ReLU) activation were repeated
twice to reduce image resolution. The expansion path also contained 4 blocks, each containing 3× 3 deconvolutions, and the ReLU function.

segmentation map, ŷi is the predicted label of the
segmentation map generated by the model, α and β

are the hyperparameters of the model, which take the
values of 1 and 50, respectively, during the experiment,
and N is the total number of pixels of the segmented
image.

Performance Assessments

We evaluated the performance of the post-trained
AI algorithm for accuracy, specificity, sensitivity,
and precision by calculating true positives (TPs),
true negatives (TNs), false positives (FPs), and false

Downloaded from hwmaint.iovs.org on 04/26/2024



Orbital Fracture Segmentation Using AI TVST | April 2023 | Vol. 12 | No. 4 | Article 7 | 5

Table 3. DenseNet-169 and UNet Algorithm Parameters

Details

Hyperparameters DenseNet-169 UNet

Depth 169 –
Activation function (ReLU) + sigmoid (ReLU) + sigmoid
Loss function BCELoss BCELoss + constraint
Filter size 3 × 3 3 × 3
Batch size 8 8
Epoch 100 100
Learning rate 0.0001 0.0001
Batch normalization After every convolution layer After every convolution layer

ReLU, rectified linear unit.

negatives (FNs). Accuracy, specificity, and sensitivity
were calculated by the cutoff value (0.5). Accuracy is
defined as the concordance rate between the AI and
the manual results. The precision reflects the assess-
ment of the AI algorithms. The higher the precision,
the fewer misjudgments in the AI algorithm. Sensi-
tivity, also known as recall, reflects the ability of AI
algorithms to identify positive results, whereas speci-
ficity assesses the ability to identify negative results.
The formulas for calculating these parameters are as
follows:

Accuracy = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Sensitivity/Recall = TP
TP + FN

(4)

Speci f icity = TN
TN + FP

(5)

The loss function curve was used to measure the
degree of inconsistency between the predicted and
true outcomes, which is an indication of the train-
ing effect of the AI algorithms. In addition, we
analyzed the correlation between sensitivity and speci-
ficity using the receiver operating characteristic (ROC)
curve and the area under the ROC curve (AUC). The
closer the AUC is to 1, the better the performance
of the model. Next, we used precision-recall (PR)
curves to analyze the correlation between precision and
recall.

We assessed the similarity between the AI and the
manual segmentation using intersection over union
(IoU) and the Dice coefficient. The Dice coefficient

and IoU are the most used evaluation assessments
in image segmentation and measure the similarity
between two sets of pixels. The formulas for calculat-
ing the Dice coefficient and IoU value are as follows,
|X| denotes the number of pixels in the label, and
|Y| denotes the number of pixels in the predicted
image.

DICE = 2 |X ∩Y |
|X | + |Y | (6)

IoU = |X ∩Y |
|X | + |Y | + |X ∩Y | (7)

Results

Selection of Proposed Network Models

To select suitable neural network models, we
compared four common neural networks: ResNet,
AlexNet, VGGNet, and DenseNet. In the test set,
DenseNet, ResNet, AlexNet, and VGGNet realized
fracture identification with accuracies of 0.9681 ±
0.0034, 0.9176 ± 0.0255, 0.9352 ± 0.097, and 0.9045
± 0.0236, respectively (Table 4). DenseNet achieved
the best performance according to the ROC, as
shown in Figure 2. In addition, DenseNet had the
lowest number of parameters among the four network
models, which might facilitate algorithm computation
reduction and save calculation time in real clinical
settings.

Performance of DenseNet-169 for the
Identification of OBFs

The accuracy of DenseNet-169 for fracture identi-
fication in the test set reached 0.9693 ± 0.0028.
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Table 4. Comparison of DenseNet With Other Network Models

Accuracy x ± s Specificity x ± s Sensitivity x ± s AUC x ± s Number of Parameters

DenseNet 0.9681 ± 0.0034 0.9596 ± 0.0330 0.9717 ± 0.0143 0.9920 ± 0.0021 12486145
ResNet 0.9176 ± 0.0255 0.9510 ± 0.0630 0.8851 ± 0.0801 0.9757 ± 0.0057 23510081
AlexNet 0.9352 ± 0.0097 0.9673 ± 0.0284 0.8772 ± 0.0628 0.9751 ± 0.0179 61101841
VGGNet 0.9045 ± 0.0236 0.8980 ± 0.0935 0.9109 ± 0.0669 0.9739 ± 0.0233 134264641

AUC, area under the receiver operating characteristic curve.
x ± s, Mean ± standard deviation.

Figure 2. Selection of network models. (A) The receiver operating characteristic curves of DenseNet for fracture identification. (B) The
receiver operating characteristic curves of ResNet for fracture identification. (C) The receiver operating characteristic curves of AlexNet for
fracture identification. (D) The receiver operating characteristic curves of VGGNet for fracture identification. AUC, area under the curve.

Table 5 summarizes the assessments of the AI
algorithms in the test set. As shown in Figure 3C,
the loss function gradually decreased with the increase
in training epochs, indicating that the identification
results of the AI algorithm gradually matched the
manual results. The AUC of the AI algorithm in the
test sets was 0.9920 ± 0.0021 (Fig. 3A), and the area
under the PR curve was 0.9957 ± 0.0017 (Fig. 3B),
showing that the post-training AI algorithm exhibited

remarkable reliability in identifying OBFs based on CT
images.

Training and Evaluation of DenseNet-169 for
Distinguishing the Fracture Side

After 100 epochs of training, the accuracy of
DenseNet-169 for fracture side distinguishment was
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Table 5. Evaluation of DenseNet-169 for Fracture Identification and Fracture Side Distinguishment

Accuracy x ± s Sensitivity x ± s Specificity x ± s Precision x ± s AUC x ± s

Fracture identification 0.9693 ± 0.0028 0.9717 ± 0.0143 0.9596 ± 0.0330 0.9832 ± 0.0132 0.9920 ± 0.0021
Fracture side distinguishment 0.9859 ± 0.0059 0.9743 ± 0.0101 0.9980 ± 0.0041 0.9980 ± 0.0040 0.9923 ± 0.0008

AUC, area under the receiver operating characteristic curve.
x ± s, Mean ± standard deviation.

Figure 3. Evaluation of post-trained DenseNet-169 for fracture identification. (A) The receiver operating characteristic curve of
DenseNet-169 for fracture identification. (B) The precision-recall curve of DenseNet-169 for fracture identification. (C) The convergence of
the loss function of DenseNet-169 during the training process for fracture identification. AUC, area under the curve; ROC, receiver operating
characteristic.

Figure 4. Evaluation of post-trained DenseNet-169 for fracture side distinguishment. (A) The receiver operating characteristic curve
of DenseNet-169 for fracture side distinguishment. (B) The precision-recall curve of DenseNet-169 for fracture side distinguishment. (C) The
convergence of the loss function of DenseNet-169 during the training process for fracture side distinguishment. AUC, area under the curve;
ROC, receiver operating characteristic.

0.9859 ± 0.0059 in the test set. Table 5 summarizes
the results of various parameters of the AI algorithms
for distinguishing the fracture sides in the test sets.
The loss function gradually decreased as the training
epochs increased, as shown in Figure 4C. The AUC of
the AI algorithm in the test sets was 0.9923 ± 0.0008
(Fig. 4B), and the area under the PR curve was 0.9954
± 0.0004, as shown in Figure 4C, suggesting that the
AI algorithm has an excellent ability to distinguish the
fracture side.

Training and Evaluation of UNet for the
Segmentation of the Fracture Area

We trained UNet for fracture area segmentation.
After 50 training epochs, the IoU of the trained
UNet in the test set was 0.8180 ± 0.0093, and the
Dice coefficient was 0.8949 ± 0.0090. The trained
UNet could annotate the direct and indirect signs
of OBFs in the CT images, as shown in Figure 4.
The trained UNet could also identify and annotate
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Figure 5. Manual and AI segmentation for various types of orbital blowout fractures. AI, artificial intelligence.
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Figure 6. Manual and AI-segmentation located in the infraorbital canal/infraorbital foramen area.

different types of orbital fractures, such as fractures
involving the medial and inferior corners of the orbit
(Fig. 5B). By analyzing the AI-annotated images,
the FP segmentation of fracture areas was located
in the infraorbital canal/infraorbital groove area
(Fig. 6).

Discussion

In this study, we developed an AI system based
on orbital CT images for the automatic identifica-
tion and segmentation of OBFs. The accuracy of our
AI system for fracture identification reached 0.9693
± 0.0028. The AI system was remarkably successful
in distinguishing the fracture side, with an accuracy
of 0.9859 ± 0.0059, which is a level that has not
been previously reported. Compared with previous
studies, we trained the AI system using the JPG
format instead of the DICOM format data gener-
ated from the imaging equipment17; JPG images are
more compatible and provide a substantial opportu-
nity for further development and application of the AI
system, such as in providing AI consultation in remote
areas.18

The IoU and Dice coefficient of the trained UNet
were 0.8180 ± 0.0093 and 0.8849 ± 0.0090 in the test

set, respectively. A minor difference between the AI
and the manual segmentation may result in signifi-
cantly lower IoU values andDice coefficients. However,
we think that the potential differences between AI
and manual segmentation are limited and will not
significantly affect the clinical implementation of AI.
The OBF features on the CT images significantly
differed in the medial wall or orbital floor. The herni-
ation of orbital contents into the maxillary sinus
cavity in the shape of a teardrop is a specific sign
of OBFs, whereas wide damage to the bony septa-
tion of the sinus cavity is a typical feature of medial
wall fractures. Meanwhile, the features of obsolete
and fresh fractures differ. The shape of the orbital
wall changes in obsolete fractures, and the orbital
bone is continuous without significant interruption.
In fresh fractures, soft tissue swelling and effusion
are often present. The trained UNet can achieve
effective segmentation of fracture areas with different
features. Interestingly, the segmentations mistaken by
the AI were predominantly located in the region of the
infraorbital canal/infraorbital foramen. The infraor-
bital foramen is an oval hole approximately 0.5 cm
below the midpoint of the infraorbital rim through
which the infraorbital nerves and blood vessels pass; it
is the opening of the infraorbital canal to the outside
of the orbit. This area is also often misdiagnosed in
orbital fractures,19 and we will further improve the
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algorithm in the future to avoid AI misjudgment in this
region.

DenseNet-169 with the pre-trained ImageNet
weight was used to identify OBFs and distinguish the
affected side. DenseNet is a DCNNmodel proposed by
Huang et al.14 that draws on the advantages of ResNet
andGoogleNet. Each convolutional layer of DenseNet
contains the output of all the previous convolutional
layers, which enables the input information to be
completely reused. The feature fusion of shadow and
deep levels can alleviate the gradient disappearance
problem caused by layer depth and improve the anti-
overfitting performance of the network. DenseNet
has superior performance in automatic classifica-
tion tasks for pulmonary nodules, breast cancer, and
other diseases.20–22 In addition, UNet was trained to
segment the OBF areas in our study. As the current
mainstream network for medical image segmen-
tation,23 UNet has been trained for locating and
segmenting intervertebral discs in MR images.24 In CT
image segmentation, UNet has been used to segment
liver tumors and chest organs.25,26 We constructed a
new loss function by adding a constraint to resolve
the ineffective segmentation of the fracture areas by
the traditional BCELoss function, which is the key to
successful segmentation. Furthermore, the improve-
ment in the loss function of UNet made by us provides
a new template for optimizing the AI algorithm in
segmenting irregular objects with small samples and
sizes.

For better application in real clinical settings, we
are planning to train the network models with more
images by supplementing the axial and sagittal CT
images in the database. In addition, we are prepar-
ing to improve the function of the AI system to
make a quantified determination of the fracture area.
High-quality CT images are the premise for imple-
menting an accurate determination of the fracture
area. Zhai et al. performed automatic calibrations and
quantitative error evaluations of orbital CTs based
on a signed distance field, which provides a direction
for our study.27 Nevertheless, automatically calibrating
large amounts of image data for AI training remains
challenging.

This study established and evaluated an AI-assisted
identification and segmentation system for OBFs
based on orbital CT images using two available deep
networks, which exhibited remarkable reliability in the
identification of OBFs and could effectively segment
the fracture area. The AI system we developed may
assist in the implementation of smart diagnosis of
OBFs and lay a foundation for improving the accuracy
and efficiency of 3D printing-assisted orbital wall
fracture repair.
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