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Perceptual confidence is thought to arise from
metacognitive processes that evaluate the underlying
perceptual decision evidence. We investigated whether
metacognitive access to perceptual evidence is
constrained by the hierarchical organization of visual
cortex, where high-level representations tend to be
more readily available for explicit scrutiny. We found
that the ability of human observers to evaluate their
confidence did depend on whether they performed a
high-level or low-level task on the same stimuli, but was
also affected by manipulations that occurred long after
the perceptual decision. Confidence in low-level
perceptual decisions degraded with more time between
the decision and the response cue, especially when
backward masking was present. Confidence in high-level
tasks was immune to backward masking and benefitted
from additional time. These results can be explained by
a model assuming confidence heavily relies on
postdecisional internal representations of visual stimuli
that degrade over time, where high-level
representations are more persistent.

Introduction

Metacognitive evaluations of perceptual confidence
are thought to rely on high-level neural processing
(Fleming & Daw, 2017; Vaccaro & Fleming, 2018) that
broadcasts confidence as a common currency across
sensory modalities (de Gardelle & Mamassian, 2014)
and, perhaps, different cognitive tasks (Mazancieux,
Fleming, Souchay, & Moulin, 2020). In visual
perception tasks, reported confidence partially relies on
the quality of the perceptual evidence encoded in visual
cortex (Geurts, Cooke, van Bergen, & Jehee, 2022).
The information encoded in visual cortex is, therefore,

crucial for the computation of confidence. However,
it is not yet well-understood how this information in
visual cortex is accessed by higher level metacognitive
processes. Here, we investigated how metacognitive
access to perceptual evidence is affected by the level of
visual processing required by the task.

Visual cortex consists of functionally specialized
anatomic regions, organized hierarchically (Felleman
& Van Essen, 1991) in terms of complexity (Maunsell
& Newsome, 1987), receptive field size (Hubel, 1988),
and temporal receptive windows (Hasson, Yang,
Vallines, Heeger, & Rubin, 2008). These regions are
highly interconnected through feedforward, feedback,
and lateral projections (Lamme, Supèr, & Spekreijse,
1998). Visual stimulation triggers a fast feedforward
sweep of information processing (Nowak & Bullier,
1997), allowing for rapid recognition (Thorpe, Fize, &
Marlot, 1996) and identification (Potter, 1976) of the
conceptual gist of a visual scene (Kanwisher, 1987).
Ongoing neural activity is thought to reflect recurrent
processing via feedback and lateral connections with a
distinct functional role (Lamme & Roelfsema, 2000):
to dynamically change neuronal tuning (Ringach,
Hawken, & Shapley, 1997; Cottaris & De Valois,
1998), allowing for contextual modulation (Kapadia,
Ito, Gilbert, & Westheimer, 1995; Zipser, Lamme &
Schiller, 1996; Lamme & Spekreijse, 1999), and feature
integration (Treisman & Gelade, 1980; Treisman, 1986).

Reverse hierarchy theory (Hochstein & Ahissar,
2002) relates the distinction between feedforward and
recurrent processing to implicit and explicit visual
perception. The initial feedforward sweep provides
global scene gist, allowing bottom-up attentional
capture by salient features, such as the pop-out of a
feature in visual search (Treisman & Gelade, 1980).
This feedforward processing is largely implicit, as
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evidenced by inattentional blindness (Mack & Rock,
1998; Most et al., 2001) and visual masking (Di Lollo,
Enns, & Rensink, 2000; Bachmann & Francis, 2013).
Explicit vision (or, vision with scrutiny) requires
recurrent processing (Pascual-Leone & Walsh, 2001),
where attention is focused down to lower level cortical
processes in reverse hierarchical order (Ahissar &
Hochstein, 2004). Although reverse hierarchy theory
is largely supported by studies of perceptual learning
and visual search, the theory has general implications
for all kinds of perceptual tasks, and the metacognitive
self-evaluation of performance in these tasks.

In applying reverse hierarchy theory to metacog-
nition, we predict that high-level perceptual
representations should be more readily available for
metacognitive scrutiny than low-level representations.
How well an observer’s confidence reflects the
underlying perceptual evidence can be quantified as
“confidence efficiency”: the sensitivity of confidence
relative to the sensitivity of an “ideal confidence
observer,” who relies on exactly the perceptual evidence
(Mamassian & de Gardelle, 2022). Confidence efficiency
reflects a trade-off between additional noise (such
as that incurred with additional noisy processing,
impairing confidence sensitivity) (Bang, Shekhar, &
Rahnev, 2019; Shekhar & Rahnev, 2021) and additional
information not used in the perceptual decision, such
as that processed after decision commitment (Pleskac
& Busemeyer, 2010; Balsdon, Wyart, & Mamassian,
2020; Balsdon, Mamassian, & Wyart, 2021) or heuristic
cues (Maniscalco, Peters, & Lau, 2016). This additional
information is referred to as confidence ‘boost’, so
that this family of models can be called the confidence
noise and confidence boost models (Mamassian & de
Gardelle, 2022). In reaching back down the processing
hierarchy, the evaluation of low-level perceptual
decisions should incur more confidence noise, and
perhaps reflect less boost (where additional evidence
accumulation could be temporally restricted by longer
re-entrant pathways).

We tested this hypothesis by comparing confidence
efficiency for high-level and low-level perceptual
decisions made on the same stimuli. In Experiments
1 through 4, observers made high-level perceptual
decisions about the direction of gaze of an avatar face
(Balsdon & Clifford, 2017), or low-level perceptual
decisions about the relative contrast of the irises of the
eyes. The perception of gaze direction is known to rely
on very high-level processing in the visual hierarchy (the
superior temporal sulcus) (Calder et al., 2007; Carlin,
Calder, Kriegeskorte, Nili, & Rowe, 2011), whereas
contrast is processed at very low levels (V1) (Rossi,
Rittenhouse, & Paradiso, 1996).

To anticipate our results, we did not find a simple
main effect of the level of visual processing, but instead
a strong interaction with postdecision time, controlled
via the time from stimulus offset to the response cue.
This interaction generalized to a fifth experiment

using biological motion stimuli, where we compared a
high-level task of discriminating walking direction with
a low-level decision made on local motion direction.
Judging walking direction recruits processing in the
superior temporal sulcus (STS) (Puce & Perrett, 2003)
and perhaps up to the prefrontal cortex (Koldewyn,
Whitney, & Rivera, 2011). In contrast, discriminating
local motion direction likely relies on visual motion
sensitive areas such as V1 and V5, which have similarly
low latencies (Lamme & Roelfsema, 2000). For both
types of stimuli, confidence efficiency decreased in
the low-level task with more time after perceptual
decision commitment, whilst confidence efficiency in
the high-level task benefitted from more time after
perceptual decision commitment. This interaction
implies that the metacognitive evaluation of perceptual
decisions is strongly reliant on postdecisional perceptual
representations, where high-level representations are
more resilient to temporal decay. The interaction
can be described computationally by modulating
the permeability of the perceptual representation to
incoming noise, in an evidence accumulation framework
based on a dynamic two-stage signal detection theory
(Pleskac & Busemeyer, 2010).

Methods

We conducted five experiments to understand
the effect of visual hierarchical processing level
on confidence efficiency, and the interaction with
postdecision time. For brevity, Experiment 1 is
described in detail, followed by the specific changes
made in Experiments 2 through 5. A summary of the
methods is presented in Table 1.

All methods were preregistered before data
collection, with preregistrations, data, and analysis code
(in MATLAB) linked on the main OSF project page1
(https://osf.io/6brmt/). Ethical approval was granted
by the local ethics committee (CER U-Paris), and
the protocols adhere to the Declaration of Helsinki.
While the preregistrations were followed in terms of
task methodology, sampling plan, and the modelling
approach, we note that the preregistered analysis plan
allowed for some flexibility with regards to the choice of
statistical tests, which we explain in more detail under
the analysis section.

Experiment 1

Participants were recruited to the laboratory for two
experimental sessions of 1 hour each. In both sessions,
they completed a block of the high-level task and a
block of the low-level task (in counterbalanced order).
For both tasks, stimulus presentation was the same: a
fixation cross was presented for 400 ms, followed by an
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Experiment
Tested

participants
Included

participants Trial pairs Stimulus
Presentation
parameters

Within-subjects
comparison

Between-
subjects

comparison

1 22 20 11,520 Avatar face White noise mask,
response cue 900 ms
after stimulus offset

High-level vs.
low-level task

N/A

2 116 92 15,364 Avatar face No mask, response
cued 100 ms after
stimulus offset

High-level vs.
low-level task

N/A

3 136 (low) 93 15,531 Avatar face Response cued 800 ms
after stimulus offset

Mask vs. no-mask High-level vs.
low-level task105 (high) 92 15,364

4 144 (low) 90 15,030 Avatar face No mask Response cue at
100 vs. 800 ms

High-level vs.
low-level task120 (high) 90 15,030

5 145 (low) 81 13,527 Biological
motion

No mask Response cue at
100 vs. 800 ms

High-level vs.
low-level task100 (high) 81 13,527

Table 1. Summary of Experiments. For each experiment, the table shows the number of participants tested, the number included in
the analysis after exclusion, the number of trial pairs for fitting the confidence forced choice model, the stimulus, the critical stimulus
presentation parameters maintained throughout the experiment, the within-subjects comparison tested, and any between-subjects
comparisons, in the case where two groups of participants were recruited. Experiment 1 was conducted in the laboratory; the rest,
online.

avatar face stimulus for 400 ms, followed by a 400 ms
white noise mask after a 500 ms blank, and then the
response was cued with the words “left or right?”
(Figure 1A). Stimuli were presented on a gamma
corrected ViewSonic 21” monitor, 57 cm from the
participant, running at 60 Hz with resolution of 1,280
× 720 pixels, using MATLAB and the psychophysics
toolbox (Brainard, 1997; Pelli, 1997; Kleiner, Brainard,
& Pelli, 2007). The avatar face was female, with
cropped hair and a neutral expression (created with
Daz software; daz3d.com). The image was grayscale,
presented at 75% contrast against a grey background
(mean luminance 60 cd/m2), subtending 14° of visual
angle. The original eyes were replaced with realistic
counterparts to manipulate the direction of gaze and
relative contrast of the irises according to precise
angular coordinates and gray levels. The high-level
task was to discriminate left from right gaze direction
(with random contrast difference), and the low-level
task was to discriminate whether the left or right eye
was “darker” (higher contrast, with random gaze
directions), using the left and right arrow keys of a
standard keyboard.

The method of constant stimuli was used, with
gaze deviations [0, 1.75, 3.5, 5.25, 7] (degrees rotated
horizontally to the left and right of direct gaze), and
contrast levels [0, 5, 10, 15, 20] (percent difference
in Michelson contrast between left and right eye).
In Experiment 1 (but not Experiments 2–5) the
task-relevant and task-irrelevant cues were manipulated
in both tasks, such that observers were presented
with the same set of stimuli in the high-level and
low-level tasks. The task-irrelevant cue had no effect

on performance: Figure 1C shows the proportion of
rightward responses in the low-level task remained
around 0.5 across gaze deviations, and similarly, the
proportion of rightward responses in the high-level task
remained around 0.5 across differences in relative iris
contrast. Fitted psychometric functions produced flat
slopes of −0.016 and −0.001 on average for the task
irrelevant cue but slopes of 0.42 and 0.41 (as a function
of stimulus range) for the task-relevant cue in the low-
and high-level tasks, respectively.

The stimulus levels were chosen according to a pilot
study to generate approximately equal performance
across tasks. As presented more fully in the Results,
we found evidence in favor of the null hypothesis of
no difference in perceptual sensitivity across the low-
and high-level tasks. In addition, in Experiment 2 we
were able to measure perceptual decision reaction times,
and found no difference in reaction times across tasks,
suggesting the tasks were similarly effortful (Klein
& Yadav, 1989). Figure 1F shows median reaction
times decreased with stronger stimulus evidence for
the perceptual decision, and this function completely
overlaps across the two tasks. This suggests the stimulus
levels were adequately chosen to equate the two tasks in
terms of the perceptual decision.

Confidence efficiency was measured using the
confidence forced-choice task (Mamassian, 2020):
every two perceptual decisions the observer chose
which decision they thought was more likely to
be correct (using the 1 and 2 keys to indicate the
first or second decision). Across stimulus strengths,
trials chosen as more likely to be correct should
follow a steeper psychometric function than the trials
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Figure 1. Methods. (A) Stimuli for Experiments 1 through 4 and general procedure. On each trial, the observer was presented with a
stimulus and asked to make one of two judgments. Judgments were either “which eye is darker? Left or right?” (a low-level task) or
“were the eyes looking to the left of right of you?” (a high-level task). In Experiment 1, they were prompted to make their response
after a white noise mask. A confidence forced choice judgment was made over two consecutive trials. (B) Stimuli for Experiment 5.
White lines are added for illustration only and were not part of the stimuli. The stimuli were dots presented with dynamic motion to
mimic human walking. In the low-level task (top), the chest and pelvis dots were rotated clockwise or counterclockwise and back to
center and the participant was asked to judge the direction, whilst in the high-level task they judged the relative walking direction (to
the left or right of directly toward them). (C) Individual (thin lines) and average (thick lines) Psychometric functions describing the
proportion of rightward responses across presented stimulus strengths. Gaze deviation had no effect on low-level responses and
contrast difference had no effect on high-level responses. (D) Proportion of rightward responses for trials chosen (filled) as more likely
to be correct and trials declined (open) at the forced choice confidence response for the low-level (top) and high-level (bottom) tasks.
Stimulus strength was normalized based on the psychometric function of each observer before aggregating across observers. The
difference between chosen and declined seems to be small here because most trial pairs contained a similar stimulus difficulty.
Confidence efficiency can be better appreciated by comparing choices according to the pairs, as in (E). (E) Proportion of trial pairs in
which the first decision was chosen as more likely to be correct, by normalized stimulus strength across the two intervals for the
low-level (top) and high-level (bottom) tasks. The more clearly cyan (0) and magenta (1) are divided along the diagonal, the more
confidence is likely to discriminate correct from incorrect perceptual decisions. (F) Reaction times by stimulus strength in each task
from Experiment 2. The top shows the average and 95% within subjects confidence (error bars) median reaction times by stimulus
strength ordered as in (C). The consistency across tasks and observers can be better appreciated by the bottom, where stimulus
strength is normalized by each individuals psychometric function, and reaction times are normalized by taking the difference from the
mean (across both tasks) in units of standard deviation (z-scored) of the logarithm of reaction times. Individuals are shown in small
markers, and the average in large markers.
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not chosen (declined) (de Gardelle & Mamassian,
2015). This is demonstrated in Figure 1D, where
responses have been aggregated across participants
after normalizing stimulus strength by individual
sensitivity (more details below), with declined trials on
average showing proportions of rightward responses
closer to 0.5. However, confidence choices depend
on both stimulus strengths presented in the pair of
trials (Mamassian & de Gardelle, 2022): observers
should choose the trial with more evidence in favor of
their perceptual decision, which is on average the trial
with greater stimulus strength. This is demonstrated
in Figure 1E, which shows observers are more likely
to choose interval 1 (the first trial in the pair) when
the stimulus strength of interval 1 is greater than
interval 2.

The stimulus strengths presented in each pair were
manipulated to improve the cost–benefit analysis of
confidence efficiency: because pairs of stimuli that
differ greatly in difficulty lead to ceiling confidence
judgments, their number was decreased. Consequently,
four pairs of trials of each combination of stimulus
strength were presented, plus an additional eight pairs
of trials of matched stimulus strength (unsigned), plus
an additional four pairs of trials at stimulus strengths
that differ by just one level, making altogether 1,152
trials (576 pairs for the confidence judgment). The
number of participants was determined based on the
number of pairs of trials required to fit the parameters
of the confidence forced-choice model at the group
level (≤10,000) (Mamassian & de Gardelle, 2022). We
initially recruited 20 participants, and replaced one
participant who did not return for the second session,
and one whose perceptual responses did not vary with
the presented stimulus (further details on exclusion
criteria in the Analysis).

Experiments 2 through 5

Experiments 2 through 5 were conducted with
participants recruited online (using the Prolific
Academic online platform, prolific.co). Participants
were instructed to complete the experiment on a
desktop or laptop device (tablets and smartphones
forbidden), at a comfortable distance, in a quiet
environment. Stimulus presentation was controlled
using PsychoPy (Peirce et al., 2019), hosted on Pavlovia
(pavlovia.org). Stimulus size was controlled using the
credit card method (Li, Joo, Yeatman, & Reinecke,
2020) and screen luminance was estimated by asking
participants to report the minimum visible white and
black contrast. The number of trials was reduced to 334
per task (167 pairs), so that the experiment could be
completed within 40 minutes. To decrease the number
of images, the task-irrelevant stimulus feature was
kept neutral, that is, observers were presented with

stimuli with direct gaze in the low-level task and equal
iris contrast in the high-level task in Experiments
2 through 4. We expected online participants to
provide more noisy data than participants recruited
to the laboratory. We therefore aimed to include at
least 80 participants (13,360 pairs of trials), by first
recruiting 100 participants and then replacing those
who met the exclusion criteria until at least 80 could be
included.

In Experiment 2, stimulus presentation was the
same, but the mask was removed. Instead, the response
cue was presented 100 ms after stimulus offset. Our
initial motivation for this change was to decrease the
duration of the experiment and the complexity of
stimulus presentation for online observers, who may
be annoyed by the backward masking procedure. This
experiment was meant to simply generalize the findings
of Experiment 1 to a larger population.

The results of Experiment 2 led us to run
Experiments 3 and 4. In Experiment 3, two groups
of participants were recruited. One group completed
the low-level task, and the other the high-level task.
Within participants we compared the effect of the
white noise mask: in separate blocks, the stimuli were
either presented in a similar manner as Experiment 1
(mask condition, with 400 ms of blank followed by
400 ms of white noise mask), or the response was cued
after 800 ms of blank (no-mask condition). The group
performing the low-level task were recruited first, and
this was preregistered as a separate experiment: had we
not found the mask to significantly decrease confidence
efficiency in the low-level task, we would not have tested
the effect in the high-level task.

Experiment 4 compared the effect of response
cue timing: in separate blocks, the response cue was
presented 100 ms after stimulus offset (as in Experiment
2) or 800 ms after stimulus offset (as in the no-mask
condition of Experiment 3). One group of participants
performed the low-level task and a second group
performed the high-level task.

Experiment 5 was the same as Experiment 4, but
used different stimuli. Instead of avatar faces, observers
were presented with 400 ms of biological motion
stimuli, formed of 15 black dots displaced to mimic a
human walking (based on the neutral gender walker
of Troje, 2002) (Figure 1B). In the high-level task,
observers discriminated whether the walking direction
was leftward or rightward of directly toward them
(presented at [0, 4, 8, 14, 20] degrees left and right of
direct). A separate group of participants completed
the low-level task, discriminating whether the chest
and pelvis dots (both located near the vertical midline)
rotated leftward (counter-clockwise) or rightward
(clockwise) and back to center (with [0, 1, 2, 3, 4] pixels
of sinusoidal motion relative to the original image
size of ∼980 pixels in height). These stimulus levels
were chosen according to a pilot study to generate
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approximately equal performance across tasks. The
starting position of the stimuli was pseudorandomly
chosen on each trial.

Analysis

The proportion of rightward responses across the
presented stimulus levels were fit with a psychometric
(cumulative Gaussian) function for each observer. The
slope of the psychometric function (standard deviation
of the cumulative Gaussian) was taken as an index of
perceptual sensitivity. We initially preregistered that
“Participants will be rejected with replacement if their
performance fails to increase above chance in either
of the T1 perceptual tasks”; we note this was not
specific. Observers were excluded if the slope exceeded
one-half of the range of stimulus values (meaning
their responses did not vary with the stimulus). After
looking at the confidence responses in the online
data from Experiment 2, we additionally chose to
exclude participants who displayed large biases in their
confidence choices (used one confidence response on
more than 78% of trials, representing a significant
difference from unbiased based on Experiment 2,
resulting in a total of 14 participants excluded across
all 888 participants from the five experiments). The
stimulus values were then recentered around the
perceptual response criterion (mean of the cumulative
Gaussian) and rescaled by the slope (units of standard
deviation), such that the values for each participant
were normalized to their perceptual response function.
The confidence forced-choice model (Mamassian & de
Gardelle, 2022; github.com/mamassian/cfc) was used
to quantify confidence noise, boost, and confidence
efficiency in data aggregated across subjects. This
model quantifies confidence efficiency as a measure
of how well the observer makes confidence decisions
relative to their perceptual decisions, by assessing
performance in confidence choices relative to the “ideal
confidence observer,” who uses exactly the evidence
of the perceptual decision to make their confidence
decision. The human observer can differ from the “ideal
confidence observer” in two ways: additional confidence
noise, such as that incurred during additional processing
(impairing confidence efficiency), and additional boost,
which captures an improvement in confidence efficiency
via the use of additional information not used in the
perceptual decision (such as evidence accumulated after
perceptual decision commitment).

This modelling analysis was conducted as described
by Mamassian and de Gardelle (2022), using
the toolbox provided github.com/mamassian/cfc.
Briefly, the model assumes that, in line with classical
psychophysics, the physical stimulus provides some
evidence strength, μs, and the observer has a noisy
sensory representation of this evidence, s, on which to

base their perceptual decisions
s = μs + εs (1)

where εs is drawn from a zero-mean Gaussian with
variance σ 2

s . The ideal confidence observer is defined
as relying on this same evidence, normalised to the
perceptual response criterion, c, and sensory noise,
σ s, to form the confidence evidence, w, upon which a
confidence judgment is made

wideal = s − c
σs

. (2)

The model proposes that the confidence evidence of
human observers is affected by additional confidence
noise, εc, which is drawn from a zero-mean Gaussian
with independent variance, σ 2

c

whuman = s − c
σs

+ εc . (3)

Human observers can also integrate additional
evidence not used for the perceptual decision, which
is modelled with the confidence boost parameter, α,
representing the proportion of additional evidence

whuman = αμs + (1 − α) s − c
σs

+ εc. (4)

The balance of confidence noise and confidence
boost determines how well the observer’s confidence
reflects their perceptual accuracy. This match between
confidence and accuracy is measured as confidence
efficiency, the ratio of the equivalent noise affecting
the observers’ confidence compared with the ideal
confidence observer. The variance of the equivalent
noise, τ 2 (a fitted parameter), attributes all the noise in
the confidence evidence as confidence noise (forcing the
confidence boost to be 1), so that confidence efficiency
is defined as

η = τ 2
ideal

τ 2
human

. (5)

In this way, confidence efficiency gives a measure of
confidence sensitivity that is independent of perceptual
sensitivity (Mamassian & de Gardelle, 2022). The model
was fit by aggregating the data across participants (after
normalizing their perceptual response functions). The
sampling distribution of the confidence parameters
(efficiency η, confidence noise σ c, and confidence boost
α) was estimated by bootstrapping (1,000 permutations
of resampled participants).

Our preregistered analysis plan was flexible with
respect to the choice of statistical test. We were
concerned standard t tests may be inappropriate,
because the parameter values have a lower bound at 0.
We preregistered that we would use Wilcoxon sign-rank
tests, unless the data were sufficiently normally
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distributed, and Bayesian statistics would be used to
examine evidence for the null. A Kolmogorov–Smirnov
test suggested the data could be approximated by
a normal distribution (in Experiment 1, confidence
efficiency Kolmogorov–Smirnov statistic = 0.013, p >
0.99; confidence noise Kolmogorov–Smirnov statistic =
0.022, p= 0.72; confidence boost Kolmogorov–Smirnov
statistic = 0.039, p = 0.1; and Experiment 2, confidence
efficiency Kolmogorov–Smirnov statistic = 0.014, p >
0.99; confidence noise Kolmogorov–Smirnov statistic =
0.02, p = 0.80; confidence boost Kolmogorov–Smirnov
statistic = 0.02, p = 0.78). So, we initially used t tests;
however, it became more obvious that it would be
beneficial to make inferences about the probability
of the null hypothesis of no difference between
conditions, so we switched to Bayesian statistics across
all comparisons for consistency. We note that the
same conclusions were drawn from the t tests and the
Bayesian statistics (with the exception of accepting the
null in some Bayesian comparisons, which produced
large p values for the t tests).

The sample distribution was analysed using
hierarchical Bayesian models (Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010), by taking
N quantiles of the bootstrapped data, where N is the
number of participants. The models assumed a gamma
distribution for confidence efficiency and confidence
noise, and a beta distribution for confidence boost. The
within-subjects comparison assumed that each subject
had some effect, x, such that their value in condition
B differs from condition A by x. Across subjects, the
effects, a, are normally distributed with mean μx and
variance σ 2

x , such that the effect size, δ, is δ = μx
σx
.

Between-subject comparisons modelled δ directly, where
the difference in the group means, y, is y = δ × σAB,
with σ 2

AB, computed as the combined variance across
the two groups. The posterior was estimated by Markov
chain Monte Carlo simulation (with 12,000 samples
over three independent chains, 1,000 samples burn-in
and three samples thinning), using the slice sampling
method (Neal, 2003) implemented in MATLAB. For
all parameters, uninformative priors were specified
as a uniform distribution over all possible (or a large
range) of parameter values. Evidence in favor of the
alternative hypothesis (δ �= 0) was based on the 95%
highest density interval of the posterior distribution of
δ values. Bayes factors were computed based on the
Savage–Dickey ratio (Wagenmakers et al., 2010) using a
unit information prior (Kass & Wasserman, 1995).

The same process was used to analyze participants’
perceptual sensitivity (the slope of the psychometric
function over the range of stimulus values), and
reaction times, but the raw samples were used instead
of inferring the samples from the bootstrapped
distribution. Only reaction times in conditions where
there was a short duration (100 ms) between stimulus
offset and the response cue were used in the analysis of

reaction times, as the response cue was presented soon
enough that the reaction time provided an estimate of
decision time that was unlikely to have been corrupted
by additional time waiting for the cue. Figure 1F shows
how reaction times depend on the stimulus strength,
suggesting that they do reflect the difficulty of the
decision, and Figure 2C shows the reaction times for
individual participants were always more than 100 ms
after the cue. Median reaction times were calculated
for each participant using the half-block (167 trials)
of responses closest to the middle of the experiment:
reaction times tended to decrease over the course of the
experiment, so participants who performed the short
condition in the first block would appear to have longer
reaction times than participants who performed the
short condition second. The data from Experiment 2
suggested taking the half-block closest to the middle
of the experiment effectively dealt with this possible
confound.

Results

Perceptual decisions in the high-level and
low-level tasks

Although our measure of confidence efficiency
accounts for potential differences in underlying
perceptual sensitivity, we endeavored to minimize any
differences in perceptual decision-making behavior
between the high-level and low-level tasks. The values
of the high-level and low-level stimulus cues were
chosen based on pilot data to give approximately equal
performance. We confirmed that perceptual sensitivity
was approximately equal in the two tasks by comparing
the slope of the psychometric function over the range
of stimulus values (Figure 1C). In Experiment 1, the
estimated posterior effect size (δ) of the difference in
sensitivity was small E(δ | xhigh − low) = 0.03 and the 95%
highest density interval overlapped with 0 [−0.40; 0.46],
suggesting little evidence for the alternative hypothesis
of a difference in sensitivity. We computed a Bayes
factor of evidence in favor of the alternative hypothesis
using the Savage–Dickey ratio (Wagenmakers et
al., 2010) with a unit information prior (Kass &
Wasserman, 1995). We found BF10 = 0.21; computed
in this direction, the larger the number relative to 1,
the more evidence against the null hypothesis (and the
smaller the number relative to 1 the more evidence
in favor of the null). In general, a Bayes factor of
greater than 3.2 (<0.31) could be considered substantial
evidence in favor of the alternative hypothesis (null
hypothesis) (Kass & Raftery, 1995). We therefore show
evidence in favor of the null hypothesis of no difference
in sensitivity across the high-level and low-level tasks.
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We additionally confirmed there was no interaction
between the task-relevant stimulus cues by showing flat
psychometric functions across cross-task cues (slope on
the probability of a rightward response in the low-level
task based on normalized gaze direction = −0.016;
and for gaze direction judgments based on relative
iris contrast, slope = −0.001 (Figure 1C). That is,
relative iris contrast had no influence on gaze direction
responses in the high-level task, and gaze direction had
no influence on iris contrast responses in the low-level
task. In Experiments 2 through 5, the task-irrelevant
cue was kept neutral.

In Experiment 2, we also found little evidence
of a difference in sensitivity across the two tasks
(E(δ | xhigh − low) = −0.18 [−0.38; 0.03] 95% highest
density interval; BF10 = 0.43). The average psychometric
functions from Experiments 1 and 2 are presented
in Figure 2A, with the slopes of individual participants

shown in Figure 2B. In addition, we performed an
exploratory analysis examining median reaction times
across the high-level and low-level tasks and found
no evidence for a difference (E(δ | xhigh − low) = −0.13
[−0.08; 0.34]; BF10 = 0.23; Figure 2C).

Together, this evidence suggests perceptual decision-
making behavior was very similar across the two tasks.
Any differences in the confidence efficiency cannot be
explained by differences in the underlying perceptual
decisions.

Confidence efficiency for high-level and
low-level perceptual decisions

Our main hypothesis was that confidence efficiency
would be greater for high-level compared with low-level
perceptual decisions, based on reverse hierarchy theory.
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Confidence efficiency is the sensitivity of confidence
decisions relative to that expected if observers had
used exactly the same evidence for confidence as their
perceptual decisions. This measure of metacognitive
sensitivity accounts for the underlying perceptual
sensitivity. In addition, we examined confidence noise
(additional noise impairing confidence sensitivity) and
confidence boost (the use of additional information
that improves confidence sensitivity), which trade-off
in contributing to confidence efficiency. Experiment
1 offered initial support for the hypothesis that
confidence efficiency is greater for high-level perceptual
decisions than low-level perceptual decisions: we found
greater confidence efficiency in the high-level task
compared with the low-level task (E(δ | xhigh − low) =
0.75 [0.27; 1.24] 95% highest density interval; BF10
= 32.26) (Figure 2D and E, top left). Comparisons
of confidence noise and confidence boost suggested
that, although low-level confidence efficiency was
impaired by relatively less noise (E(δ | xhigh − low) = 1.46
[0.89; 2.08]; BF10 >1,000) (Figure 2D and 2E, middle
left), low-level confidence also showed little sign of
confidence boost, which substantially contributed to
high-level confidence efficiency (E(δ | xhigh − low) = 1.95
[1.24; 2.7]; BF10 1,000) (Figure 2D and E, bottom left).
In this experiment, participants were presented with the
same sets of stimuli across the two tasks, they showed
similar sensitivity with their perceptual decisions
across the two tasks, and yet confidence efficiency
was significantly superior for the high-level perceptual
decisions.

In Experiment 2, we attempted to replicate the results
of Experiment 1 in a larger sample of participants
recruited online. We had preregistered one-tailed
tests; however, the effect on confidence efficiency in
Experiment 2 was the opposite of that predicted:
confidence efficiency was greater in the low-level task
compared with the high-level task (E(δ | xhigh − low) =
−0.66 [−0.42; −0.88]; BF01 >1,000) (Figure 2D and E,
top right).

We performed post hoc (not preregistered)
comparisons to examine the differences between
Experiments 1 and 2. Perceptual decision performance
was overall similar in Experiment 2 compared with
Experiment 1: the slopes of the psychometric functions
(reflecting perceptual sensitivity) were not substantially
dissimilar in the high-level task (E(δ | xExp 1 − 2) =
0.31 [−0.25; 0.8]; BF10 = 0.55) (Figure 2D), although
slightly lower in the low-level task (E(δ | xExp 1 − 2) =
0.48 [0.09; 0.8]; BF10 = 4.35). Confidence efficiency
was greater in the low-level task of Experiment 2
(E(δ | xExp 1 − 2) = −1.22 [−0.5; −1.92]; BF10 = 25;
but not substantially dissimilar in the high-level task;
E(δ | xExp 1 − 2) = 0.49 [−0.12; 1.08]; BF10 = 0.93)
(Figure 2F, top). Performance metrics were not overall
worse in Experiment 2, this finding suggests that the
difference in the results is not due to differences in

stimulus presentation or task engagement in the online
format.

The effect of visual masking on confidence
efficiency

We questioned whether there was some difference
between the tasks of Experiments 1 and 2 that
could explain the reversal of the effect on confidence
efficiency. In Experiment 1, a white noise mask was
presented after the stimulus, but this was removed
in Experiment 2, with the response cue presented
100 ms after the stimulus. The white noise mask would
activate processing in the same cortical regions as
the low-level representation of relative iris contrast
and could potentially affect very late processing for
confidence whilst having limited effect on the earlier
perceptual decision processes. Experiment 3 compared
the effect of the mask within-subjects, keeping the
duration between stimulus offset and response cue
stable (800 ms). As predicted, there was an effect of
the mask on confidence efficiency in the low-level task
(E(δ | xmask − nomask) = −0.73 [−0.51; −0.97]; BF10
>1,000) (Figure 3A, left), whereas perceptual sensitivity
was unaffected (E(δ | xmask − nomask) = 0.05 [−0.25; 0.16];
BF10 = 0.12) (Figures 3E and F). This was mainly
due to a decrease in confidence noise in the no-mask
condition (E(δ | xmask − nomask) = 0.54 [0.32; 0.76]; BF10
>1,000) (Figure 3A, middle) with some evidence for
a decrease in confidence boost (E(δ | xmask − nomask) =
0.27 [0.06; 0.47]; BF10 = 3.13; although both conditions
showed close to no boost) (Figure 3A, right).

In the high-level task, the mask had no effect
on perceptual sensitivity (E(δ | xmask − nomask) = 0.02
[−0.19; 0.22]; BF10 = 0.11) nor confidence efficiency
(as predicted; E(δ | xmask − nomask) = 0.1 [−0.29; 0.1];
BF10 = 0.16) (Figure 3A). The confidence noise
and boost parameters did appear to differ between
mask and no-mask conditions in the high-level task
(despite the effects cancelling to give equal confidence
efficiency; there was more confidence noise in the
no-mask condition; E(δ | xmask − nomask) = −1.71 [−2.02;
−1.38]; BF10 > 1,000; and more confidence boost;
E(δ | xmask − nomask) = −1.56 [−1.88; −1.25]; BF10
>1,000) (Figure 3A).

We performed some post hoc (not preregistered)
analyses to assess whether the mask explained the
differences between Experiments 1 and 2. Critically,
the effect of the mask was not sufficient to explain
the difference between Experiments 1 and 2. In the
low-level task, the between subjects effect on confidence
efficiency was E(δ | xExp 1 − 2) = −1.22 [−1.91; −0.41];
BF10 = 25), compared with the within-subject
effect E(δ | xmask − nomask) = −0.73 in Experiment 3
(Figure 3B); we would expect the effect size to be at
least as large (e.g., Figure 4C).
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Interestingly, and in agreement with the results of
Experiment 1, confidence efficiency was greater for
the high-level task in both the mask and no-mask
conditions of Experiment 3 (Figure 3C). Although

the mask condition closely mirrored Experiment 1,
the no-mask condition differed substantially from
Experiment 2 (Figure 3D). Had the mask been
completely responsible for the decrease in low-level
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confidence efficiency in Experiment 1 compared
with Experiment 2, confidence efficiency should have
recovered in the no-mask condition of Experiment
3, and produced similar confidence efficiency as
Experiment 2. Therefore, the presence or absence of a
mask is not sufficient to explain the different results in
Experiments 1 and 2.

The effect of response cue timing on confidence
efficiency

Although the mask explained some of the difference
in effects on confidence efficiency between Experiments
1 and 2, it was clearly not the only explanation. The
other difference between Experiment 1 and Experiment
2 was the duration between stimulus offset and the
response cue, which could be termed “poststimulus
time.” In Experiments 1 and 3, the response cue
was presented 900 ms and 800 ms, respectively, after
stimulus offset, where observers likely committed
to their perceptual decisions long before the cue. In
Experiment 2, the response cue was presented just
100 ms after stimulus offset, with the next stimulus or
confidence decision cued 200 ms after the response. We
tested whether the timing of the response cue could
explain some of the difference between Experiment
1 and Experiment 2 in Experiment 4, by comparing
conditions with a short (100 ms) and long (800 ms)
duration between stimulus offset and response cue
(within participants, and with separate groups of
participants performing the low- and high-level tasks).

In the low-level task, there was a significant decrease
in confidence efficiency with longer duration between
stimulus offset and the response cue (E(δ | xshort − long) =
0.46 [0.25; 0.68]; BF10 >10,001) (Figure 4A, left), and
underlying this was a decrease in noise (E(δ | xshort − long)
= 0.56 [0.34; 0.77]; BF10 >1,000) (Figure 4A, middle),
and a greater decrease in boost (E(δ | xshort − long) =
0.82 [0.58; 1.06]; BF11 >1,000) (Figure 4A, right). In
the high-level task, there was a significant increase in
confidence efficiency with longer duration between
stimulus offset and the response cue (E(δ | xshort − long) =
−0.75 [−0.98; −0.53]; BF11 > 1,000) (Figure 4A, left),
with increased noise (E(δ | xshort − long) = −0.48 [−0.7;
−0.26]; BF10 >1,000) (Figure 4A, middle), and a larger
increase in boost (E(δ | xshort − long) = −0.75 [−0.99;
−0.52]; BF10 > 1,000) (Figure 4A, right). This finding
was in line with our prediction that response cue timing
interacts with the effect of task on confidence efficiency,
increasing confidence efficiency with more time in the
high-level task and decreasing in the low-level task.

Examining the effect sizes (not preregistered), the
difference in confidence efficiency between the short
and long duration conditions was not sufficient to
explain the difference between Experiments 1 and 2 in
the low-level task, but was sufficient in the high-level

task (Figure 4B). However, adding the effects from
Experiment 3 and 4 (prediction in open markers
in Figure 4C) almost perfectly captures the effect size
of the difference in confidence efficiency between
Experiments 1 and 2 (Figure 4C). That is, the different
effects on confidence efficiency between Experiments
1 and 2 can be explained by the additive effects of the
mask and the duration from stimulus offset to response
cue.

Postdecision processes and confidence
efficiency

The presentation of the mask, and the manipulation
of response cue timing, occur long after participants
have likely committed to their perceptual decisions
(and indeed these manipulations had little effect on
perceptual sensitivity). We therefore hypothesized
that these effects on confidence efficiency might be
driven by postdecision processes. Two-stage dynamic
signal detection theory (Pleskac & Busemeyer, 2010)
proposes that confidence is based on ongoing evidence
accumulation, which continues after perceptual decision
commitment, thus providing one possible explanation
for our data. The model assumes that the observer
accumulates noisy samples of evidence over time until
a decision bound is reached, which determines their
choice and reaction time. This process can be seen as a
dynamic extension of the perceptual process described
in Equation 1,

st+�t = st + μs + εs,t+�t, (6)

where st is the accumulated evidence up to time t,
which is described as evolving over small time steps,
�t, with added signal, μs, and noise, εs,t + �t, drawn
from independent identically distributed Gaussian
distributions with zero mean and variance σ 2

s . Example
evidence accumulation traces are shown in Figure5A
(left), simulating the different evidence strengths
(signal-to-noise ratios) used in these experiments. The
observer commits to a decision when the accumulated
evidence reaches a decision bound (deciding “right”
when the evidence reaches the upper bound, or “left”
at the lower bound; black curves on Figure 5A describe
collapsing decision bounds, which account for how the
observer commits to a decision based on little evidence
without very long decision times). The response time
includes additional nondecision time (e.g., the time from
committing to a decision to planning and executing the
button press response to report the decision).

Two-stage dynamic signal detection Theory suggests
that the observer continues accumulating evidence
after the bound, for a certain period of time, and this
final accumulated evidence is used to judge decision
confidence. This continued accumulation would
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Figure 5. Perceptual evidence accumulation for decisions and confidence. (A) Simulations of perceptual evidence accumulation and
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predecision commitment, the bottom plot shows continued accumulation of noise only (no additional signal evidence after decision

→
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←
commitment). The distributions of final accumulated evidence (for each stimulus strength) are shown to the right, assuming
accumulation continues until the next trial in the short and long duration to response cue conditions. These distributions of final
accumulated evidence for confidence generate different predictions about confidence efficiency, shown in the bar plot to the right.
Continued accumulation of the same signal + noise as prior to decision commitment (filled bars) predicts an increase in confidence
efficiency with more time, whereas accumulating noise only predicts a decrease in confidence efficiency (open bars). (B)
Demonstration of the relationship between postdecision time and decision time in the short (top) and long (bottom) duration to
response cue conditions. The blue bars represent decision time, pink, nondecision time (NDT), and purple, the intertrial interval (ITI).
In the long duration condition there is additional waiting time (WT, yellow) where the participant waits for the response cue.
Assuming perceptual decision processes proceed in the same manner in both conditions (as there was no substantial difference in
perceptual sensitivity), participants who made decisions faster (labelled ‘fast’) would have relatively longer postdecision time (NDT +
WT) in the long duration condition compared with those who took longer (labelled “medium”). (C) Confidence efficiency in
Experiment 2, splitting participants into three equal groups based on their reaction times. Thin error bars show 95% CI, thick show ±1
SD. (D) Within subjects effects for the difference in high-level and low-level confidence efficiency in (C). Error bars show 95% highest
density interval. (E) Model predicted difference in confidence efficiency between the high-level and low-level tasks assuming
confidence efficiency is based on continued accumulation with the same signal-to-noise ratio as the prior to decision commitment in
the high-level task, and continued accumulation of noise only in the low-level task. The pattern of decreasing difference is similar to
that of the data in Experiment 2. (F) Confidence efficiency in the low-level (top) and high-level (bottom) tasks for participants split into
three RT groups based on their reaction times in the short duration condition in Experiments 4 (left) and 5 (right). Thin error bars
show 95% CI, thick show ±1 SD. (G) Within-subjects effects for the difference between the short and long duration to response cue
conditions in Experiments 4 and 5. Error bars show 95% highest density interval.

contribute to confidence boost (additional evidence
used for confidence that was not used for the perceptual
decision, so long as there is greater signal than noise).
With a short duration from stimulus offset to response
cue, the maximum time an observer would have to
continue accumulating evidence for confidence after
their decision is the time to plan and execute the button
press response (nondecision time) plus the inter-trial
interval (200 ms; pink and purple bars in Figure 5B,
top), at which point the observer would need to prepare
to accumulate evidence for the next decision. The
median postdecision time in the short duration to
response cue condition described by the distance from
the green to the red line in Figure 5A (left). With a long
duration from stimulus offset to response cue, there is
additional postdecision time (yellow bar of Figure 5B,
bottom; distance from the vertical green to black
line in Figure 5A). In the long duration condition,
the postdecision time depends on the decision time:
participants who decide sooner have more time to
wait before entering their response (comparing fast
with median in Figure 5B bottom), whereas the
“poststimulus time” is the same. The long duration
condition therefore distinguishes the postdecision time
from the “poststimulus time.”

Classic two-stage dynamic signal detection theory
suggests that the postdecision evidence accumulation
continues with the same signal-to-noise ratio as prior
to decision commitment (Figure 5A top left). This
would predict that with longer postdecision time the
distributions of accumulated evidence from different
underlying stimulus strengths become more separable,
leading to better confidence efficiency with longer
postdecision evidence accumulation (Figure 5A top

and right filled bars). In these experiments, the stimulus
was removed after 400 ms, meaning the observer would
need to maintain a representation of the stimulus to
continue accumulating evidence. This representation
likely decays over time, or in the extreme, is not present
at all, meaning the observer only accumulates noise in
the postdecision time period (Fig 5A. bottom left). This
would only increase the noise with more time, predicting
worse confidence efficiency with longer durations of
postdecision evidence accumulation (Figure 5A right,
open bars).

The predictions of Figure 5A suggest that confidence
efficiency can improve with longer durations of
postdecision time with some maintenance of the
signal in ongoing accumulation (top row of Figure 5A
left, filled bars to the right; as in the high-level task,
Experiment 4; Figs. 4A, 4B), whereas if the ongoing
signal decayed to be overwhelmed by noise, confidence
efficiency would worsen with more time (bottom row
of Figure 5A left, open bars to the right; as in the
low-level task, Experiment 4; Figs. 4A, 4B). This
model may, therefore, offer some theoretical basis for
the postdecision changes in confidence efficiency we
observe in these experiments, if the signal-to-noise
ratio of the high-level perceptual evidence is relatively
well maintained for ongoing accumulation (filled bars
of Figure 5A, right) but rapidly decays for low-level
perceptual evidence (open bars of Figure 5A, right).

A stricter prediction is that the signal-to-noise ratio
of postdecision evidence accumulation depends on the
predecision signal-to-noise ratio with short durations
of postdecision accumulation. To test this finding, we
ran an exploratory (not preregistered) analysis where
we split participants in Experiment 2 into three equal
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groups (RT groups; 30 participants each) based on
their median reaction time. We found that perceptual
sensitivity did not substantially differ across RT groups
nor between tasks within RT groups (minimum BF01
= 1.98), suggesting that those participants who took
longer to respond were accumulating evidence with a
lower signal-to-noise ratio for a longer duration. In
other words, participants who took longer to respond
had a lower predecision signal-to-noise ratio and so
should experience relatively less benefit from ongoing
accumulation in the high-level task, and relatively less
harm from ongoing accumulation in the low-level
task. The number of trials in each group was only
sufficient to estimate confidence efficiency, not to
fit the full model with confidence noise and boost
(Mamassian & de Gardelle, 2022). The difference
between confidence efficiency in the high-level and
low-level tasks was dependent on the median reaction
time (Figures 5C, 5D): for the fast responders,
confidence efficiency was greater in the high-level task
(E(δ | xhigh − low) = 0.71 [0.33; 1.12]; BF10 > 1,000);
for the median responders, confidence efficiency was
slightly greater in the low-level task (E(δ | xhigh − low) =
−0.44 [−0.81; −0.07]; BF10 = 3.03); and for the slow
responders, confidence efficiency was even greater in the
low-level task (E(δ | xhigh − low) = −0.89 [−1.30; −0.49];
BF10 > 1,000). This pattern of effects was predicted by
simulating a model (Figure 5E) in which confidence
efficiency in the high-level task was predicted by
continued accumulation with the same signal-to-noise
ratio as prior to decision commitment, whereas in the
low-level task observers only accumulated additional
noise (the red bars of Figure 5A correspond with
the medium response time observers, the middle dot
of Figure 5E). Across RT groups, confidence efficiency
decreased in the high-level task with increasing reaction
time, whereas in the low-level task confidence efficiency
slightly increased with increasing reaction time.

Another prediction is that the difference in
confidence efficiency between the short and long
durations to response cue conditions would depend
on decision time, such that participants with faster
reaction times in the short condition (indicating faster
decision times) would have a comparatively longer
postdecision time in the long condition compared
with those who take longer to decide (Figure 5B).
As an exploratory analysis, we split participants in
Experiment 4 based on their reaction times in the
short duration condition (Figure 5F, left column).
In the low-level task observers with faster response
times showed better confidence efficiency in the short
compared with the long condition (E(δ | xlong − short)
= 0.81 [0.36; 1.23]; BF10 > 1,000), whereas observers
with median and long response times showed the
opposite effect (median responders: E(δ | xlong − short) =
−1.03 [−1.49; −0.59]; BF10 >1 0,00) slow responders:
E(δ | xlong − short) = −0.92 [−1.35; −0.48]; BF10 > 1,000)

(summary in Figure 5G). The opposite pattern was
visible in the high-level task: fast responders showed
worse confidence efficiency in the short condition
(E(δ | xlong − short) = −1.54 [−2.01; −1]; BF10 > 1,000),
whereas median and slow responders showed better
confidence efficiency in the short condition (median
responders: E(δ | xlong − short) = 2.20 [1.55; 2.88]; BF10
> 1,000; slow responders: E(δ | xlong − short) = 0.56
[0.167; 0.94]; BF10 = 6.54) (Figure 5G). Note that a
simple effect of “poststimulus time” would predict no
difference in confidence efficiency in the long condition
dependent on decision time in the short condition
(poststimulus time is the same for the three groups of
participants). Instead, we find confidence efficiency
is modulated across decision-time groups in the long
condition, suggesting the effect is driven by underlying
“postdecision time.”

In Experiment 5, we tested whether these patterns of
behavior generalize to other stimuli, as an indicator that
the level of visual processing is driving the interaction
(as opposed to some property particular to the avatar
face stimuli or the perceptual tasks). In a high-level task
observers judged whether a biological motion stimulus
appeared to be walking to the left or right of directly
toward them. In a low-level task, they judged whether
two central dots of that stimulus were rotated clockwise
or counterclockwise of vertical.

The results followed a similar pattern as those found
in Experiment 4, although weaker (Figure 5G). For
brevity, we present only the analysis of participants
split by response times. In the low-level task, the pattern
of effects were similar across experiments (Figure 5G,
top), but in Experiment 5 fast and median responders
showed no substantial difference in confidence efficiency
(fast responders: E(δ | xlong − short) = 0.31 [−0.06; 0.69];
BF10 = 0.66); median responders: E(δ | xlong − short)
= −0.27 [−0.66; 0.1]; BF10 = 0.50; slow responders:
(E(δ | xlong − short) = −0.422 [−0.79; −0.05]; BF10 =
2.17). In the high-level task, the switch from short
condition showing better confidence efficiency to long
condition showing better confidence efficiency was
delayed to the median and slow responders (Figure 5G,
bottom; confidence efficiency was the same across
conditions for fast responders: E(δ | xlong − short) =
−0.01 [−0.38; 0.37]; BF10 = 0.21; median responders:
(E(δ | xlong − short) = −0.44 [−0.80; −0.05]; BF10 = 2.00;
and slow responders: (E(δ | xlong − short) = 0.85 [0.42;
1.27]; BF10 > 1,000).

Discussion

We found differences in confidence efficiency within
observers making different perceptual decisions about
the same visual stimuli (despite similar perceptual
sensitivity and reaction times across perceptual

Downloaded from hwmaint.iovs.org on 04/25/2024



Journal of Vision (2024) 24(4):2, 1–18 Balsdon, Wyart, & Mamassian 15

decisions). In Experiment 1, we found greater
confidence efficiency for high-level compared with
low-level decisions, as predicted by reverse hierarchy
theory (Hochstein & Ahissar, 2002). These findings
were reversed in Experiment 2, when the white noise
mask was removed and there was a short duration
from stimulus offset to response cue. We explained this
reversal in Experiments 3 and 4, showing both an effect
of backward masking on low-level confidence efficiency,
and an effect of postdecision time. We generalized
these results to different stimuli in Experiment 5,
showing the results are not driven by something
particular to the stimuli, but relate to the hierarchical
level of visual representation. This highlights how
ongoing processes for confidence (Yu, Pleskac, &
Zeigenfuse, 2015; Desender, Vermeylen, & Verguts;
2022) can be extended for relatively long durations, even
though these ongoing processes may be detrimental
to the quality of confidence decisions. Especially
for low-level representations, confidence would
benefit from terminating ongoing processes before
evidence degradation. This brings into question what
mechanisms are responsible for finalizing confidence:
optimal processing would require some control of
how much additional accumulation contributes to
confidence decisions (perhaps through nested cognitive
processes) (Recht, Jovanovic, Mamassian, & Balsdon,
2022).

Although we did not find the simple main effect
that was predicted from reverse hierarchy theory
(Hochstein & Ahissar, 2002), these results are not
inconsistent with its general principles: confidence
in the low-level task was much more vulnerable to
noise than confidence in the high-level task. Our
findings further suggest that high-level perceptual
representations can persist for relatively longer
durations. If this is also a quality of hierarchical
organization, then high-level representations should
also be less permeable to degradation in other tasks
requiring long maintenance times, such as visual
working memory tasks (as has recently been suggested)
(Ding, Cueva, Tsodyks, & Qian, 2017; Luu, Zhang,
Tsodyks, & Qian, 2022). In this way, high-level
representations would not only be more readily
accessible for explicit scrutiny, but also more readily
available over time.

We suggest that the interaction between reaction
time and level of visual processing on confidence
efficiency can be explained by the dynamics of ongoing
evidence accumulation processes, such as those
suggested by the two-stage dynamic signal detection
theory framework (Pleskac & Busemeyer, 2010).
The difference in the effect of postdecision time on
high-level and low-level representations can be captured
by assuming the ongoing perceptual representation
degrades over time and, for low-level representations,
quickly becomes overwhelmed by additional noise.

These dynamic changes in the signal-to-noise ratio of
the continued accumulation for confidence may appear
in contradiction with Yu et al. (2015), who found a
constant accumulation rate. However, this difference
could be explained by differences in experimental
design, for example, signal degradation could have been
reduced in this earlier work by continuously presenting
the stimulus until the confidence decision. Further
investigation is required to characterize the nature of
these dynamic changes in the signal-to-noise ratio. Our
results suggest there is both signal degradation as well
as additional noise. Some of this noise may accumulate
over time in a manner proportional to perceptual noise,
this would explain how fast responders (who have less
perceptual noise) show better confidence efficiency after
a longer duration in the low-level task. This finding is
also consistent with the measured confidence boost,
which tended to increase with duration in the high-level
task, but rarely rose above 0 in the low-level task
(unless continued processing was cut-off early, limiting
accumulation noise). However, simulated confidence
efficiency with only additional perceptual noise was
still superior to that measured from human behavior
(Figure 5A), suggesting a second source of noise in later
processing stages, such as converting the confidence
representation into the appropriate behavioral response.

These dynamic changes in the quality of accumulated
evidence are linked with the level of representation in
the visual hierarchy, as evidenced by the similar pattern
of results in Experiments 4 and 5 (which used different
stimuli). High-level representations must be maintained
for a long duration (as all but the fast responders
showed better confidence efficiency after longer
durations) and this duration must be relative to the
time of decision commitment (because the poststimulus
time is approximately the same across groups in the
long-duration condition). Although for high-level
representations this conservation over time could be
linked with a more conceptual representation, the effect
of visual backward masking on low-level confidence
efficiency suggests a strong influence of ongoing
perceptual processes to metacognition. This effect of
the mask could be described as injecting even more
noise into the ongoing low-level accumulation. Further
investigation is required to more finely map these
dynamics across the visual hierarchy and understand
the sources of additional noise at the neural level.
Overall, these results highlight how ongoing perceptual
processes continue to contribute to metacognition long
after perceptual decision commitment.

Although we suggest that the two-stage dynamic
signal detection theory framework provides a
useful explanation of the pattern of results in these
experiments, more work is required to test the
theoretical predictions explicitly in light of this new
evidence. Moreover, in our basic formulation, we make
several simplifying assumptions, such as the assumption
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that observers might continue to accumulate evidence
for confidence until the start of the next decision.
Although the effect of the mask suggests additional
accumulation for confidence continues for more than
400 ms after stimulus offset, the current design cannot
be used to test when it actually ends. Another factor is
how continued accumulation might proceed in other
tasks, or in designs where participants are asked for a
confidence rating after every perceptual decision.

In summary, our ability to evaluate the accuracy of
our perceptual decisions using confidence is strongly
reliant on ongoing perceptual representations. Our
results suggest that this continued perceptual processing
can be extended for relatively long durations, even
though the quality of the perceptual representation
declines over time. The dynamics of ongoing perceptual
representations can explain differences in confidence
efficiency despite no differences in perceptual
sensitivity, suggesting that perceptual sensitivity alone
is not sufficient to explain all perceptual effects on
metacognitive processes.

Keywords: metacognition, perception, confidence,
reverse hierarchy, visual masking, evidence accumulation
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