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In many different domains, experts can make complex
decisions after glancing very briefly at an image.
However, the perceptual mechanisms underlying expert
performance are still largely unknown. Recently, several
machine learning algorithms have been shown to
outperform human experts in specific tasks. But these
algorithms often behave as black boxes and their
information processing pipeline remains unknown. This
lack of transparency and interpretability is highly
problematic in applications involving human lives, such
as health care. One way to “open the black box” is to
compute an artificial attention map from the model,
which highlights the pixels of the input image that
contributed the most to the model decision. In this work,
we directly compare human visual attention to machine
visual attention when performing the same visual task.
We have designed a medical diagnosis task involving the
detection of lesions in small bowel endoscopic images.
We collected eye movements from novices and
gastroenterologist experts while they classified medical
images according to their relevance for Crohn’s disease
diagnosis. We trained three state-of-the-art deep
learning models on our carefully labeled dataset. Both
humans and machine performed the same task. We

extracted artificial attention with six different post hoc
methods. We show that the model attention maps are
significantly closer to human expert attention maps than
to novices’, especially for pathological images. As the
model gets trained and its performance gets closer to
the human experts, the similarity between model and
human attention increases. Through the understanding
of the similarities between the visual decision-making
process of human experts and deep neural networks, we
hope to inform both the training of new doctors and the
architecture of new algorithms.

Introduction

Made outstanding progress

During the past 20 years, machine learning
algorithms have made outstanding progress in key
domains such as computer vision, language processing,
and decision-making. In particular, deep neural network
architecture outperformed humans in well-defined
tasks and environments such as Atari video games

Citation: Vallée, R., Gomez, T., Bourreille, A., Normand, N., Mouchère, H., & Coutrot, A. (2024). Influence of training and expertise
on deep neural network attention and human attention during a medical image classification task. Journal of Vision, 24(4):6, 1–
27, https://doi.org/10.1167/jov.24.4.6.

https://doi.org/10.1167/jov.24.4.6 Received September 23, 2022; published April 8, 2024 ISSN 1534-7362 Copyright 2024 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Downloaded from hwmaint.iovs.org on 04/24/2024

mailto:remi.vallee88@gmail.com
mailto:tristan.gomez@etu.univ-nantes.fr
mailto:arnaud.bourreille@chu-nantes.fr
mailto:nicolas.normand@univ-nantes.fr
mailto:harold.mouchere@univ-nantes.fr
mailto:antoine.coutrot@cnrs.fr
https://doi.org/10.1167/jov.24.4.6
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2024) 24(4):6, 1–27 Vallée et al. 2

(Badia et al., 2020), various board games (Silver et al.,
2018), the characterization of precise bacteria (Buetti-
Dinh et al., 2019), and medical diagnosis (Abràmoff,
Lavin, Birch, Shah, & Folk, 2018; Brinker et al., 2019;
Brown et al., 2018; Esteva et al., 2017; Rajpurkar
et al., 2018). However, these great performances were
mostly produced by opaque models with an increasing
number of parameters. This lack of transparency and
interpretability is highly problematic in applications
involving human lives, such as health care (Cabitza,
Rasoini, & Gensini, 2017; Dave, Naik, Singhal, &
Patel, 2020), criminal risk assessment (Angwin, Larson,
Kirchner, & Mattu, 2013), or autonomous driving
(Codevilla, Santana, Lopez, & Gaidon, 2019).

Here, we propose to investigate the interpretability
of deep learning algorithms in a computer-aided
medical diagnosis task. Medicine is a field with a
growing demand for machine-learning approaches
to ease the burden on often overworked doctors.
However, doctors need algorithms that not only are
performing well but are also trustworthy, transparent,
interpretable, and explainable for human experts
(Holzinger, Langs, Denk, Zatloukal, & Müller,
2019).

More precisely, we compare the parts of the images
that humans and machines use to make their predictions
in a medical image classification task. To do so, we use
the attention maps produced by deep neural networks
(artificial attention) and the human eye position
maps recorded in an eye-tracking experiment (human
attention).

Human attention
Our brain constantly receives a tremendous amount

of information. Despite its substantial capacity, it
cannot simultaneously process all the incoming stimuli.
To select the most pertinent ones, the brain uses a filter,
called attention. Our eye movements are a dynamic
manifestation of where we direct our attention. We
use them to sample our visual field, guided by both
bottom-up and top-down mechanisms.
Bottom-up attention: Also called exogenous attention,
it is a process driven by the stimuli, where salient
features are automatically selected by the visual system.
Since this process is only image based, it is much
simpler to model, and many bottom-up visual saliency
models have been proposed in the literature (for reviews,
see Borji, 2021; Borji and Itti, 2013; Kümmerer and
Bethge, 2021).
Top-down attention: Also called endogenous attention,
this process is driven by the observer and influenced by
their prior knowledge, their center of interest, the task
at hand, or their cognitive state (de Haas, Iakovidis,
Schwarzkopf, & Gegenfurtner, 2019). Since human
factors are harder to model, this process has received
less attention from the computer vision community

(although see Schutt, Rothkegel, Trukenbrod, Engbert,
& Wichmann, 2019; Tanner and Itti, 2019).

Machine attention
Attention in neural networks can be viewed as a

top-down mechanism. It can also be split into two main
categories: learned attention and post hoc attention.
Learned attention: This type of attention refers to a
precise type of model where choosing the relevant part
of an input is established as a goal by the objective
function. We can distinguish two subtypes of learned
attention: hard attention, which consists of the
binary selection of the parts of the input that will be
used for the final decision (Mnih, Heess, Graves, &
Kavukcuoglu, 2014; Xu et al., 2015), and soft attention,
which consists of the weighted parts of the original
input used to make the decision (Bahdanau, Cho, &
Bengio, 2015; Sharma, Kiros, & Salakhutdinov, 2015;
Woo, Park, Lee, & Kweon, 2018). The latest is the most
widespread form of learned attention due to its crucial
role in the architecture of transformer networks.
Post hoc attention: Unlike learned attention, post hoc
attention is computed once the training of the neural
network is over. Its goal is to extract the parts of the
input that lead to the final decision, by focusing on
the information hidden in the “black-box” model.
Post hoc attention can be quantified in different ways.
For example, the gradient can be back-propagated
to generate class spatial attention maps (Simonyan,
Vedaldi, & Zisserman, 2013; Springenberg, Dosovitskiy,
Brox, & Riedmiller, 2015), or the global average pooling
of the gradient of a specific class can be used to weight
the features activation map of a target layer (Selvaraju
et al., 2017).

Computer vision and the science of human visual
processing have been informing each other for
many years (Gerhard, Wichmann, & Bethge, 2013;
Hyvärinen, Hurri, & Hoyer, 2009; Olshausen and Field,
1996). With the advent of artificial neural networks, the
question of whether deep networks and neurobiological
systems use similar representations in support of similar
tasks has gained even more traction (Barrett, Morcos,
& Macke, 2019; Jacob, Rt, Katti, & Arun, 2021;
Serre, 2019; Sinz, Pitkow, Reimer, Bethge, & Tolias,
2019). In particular, a few studies directly compared
how humans and neural networks deploy their visual
attention while performing the same task (Lai et al.,
2020; Qi, Zheng, Yang, Cao, & Hsiao, 2023; Rong, Xu,
Akata, & Kasneci, 2021). We can find some examples
of this kind of parallel in reinforcement learning with
Atari games (Guo et al., 2021), meal preparation
(Li, Liu, & Rehg, 2020), driving (Leong, Radulescu,
Daniel, DeWoskin, & Niv, 2017), and visual question
answering (Sood, Kögel, Strohm, Dhar, & Bulling,
2021). Das et al. (Das, Agrawal, Zitnick, Parikh, &
Batra, 2017) propose a comparison on a click-based
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saliency dataset and conclude that attention models and
humans do not observe the same areas during a visual
question-answering task. This annotation method
has been shown to produce noisy data that do not
reflect the reality of human fixations (Tavakoli, Ahmed,
Borji, & Laaksonen, 2017). Lai et al. (2020) compare
the results obtained with soft attention architectures
and real eye-tracking data from a publicly available
eye-tracking dataset. They show that when both human
visual attention and artificial attention are task driven,
the higher the performance of the networks, the closer
the artificial attention is to human attention. Even if
this work is limited by a strong heterogeneity between
the experimental conditions of humans and machine
and by the limited number of participants, their results
encourage us to continue working on this comparison.

As stated in the beginning of this introduction,
the aid in medical diagnosis is arguably one of the
fields where explainable artificial intelligence could
be the most useful to society. However, only a few
preliminary studies compared human and machine
visual attention on a medical image classification task,
and these preliminary studies only featured up to
three medical experts, which makes any generalization
difficult (Muddamsetty, Jahromi, & Moeslund, 2021).
Explaining the decisions of deep neural networks
has gained interest in recent years for the computer-
aided medical diagnosis community. Although the
comparison of human and machine visual attention in
a medical image classification task has been explored
(Thakoor, Koorathota, Hood, & Sajda, 2020), even
in the context of wireless capsule endoscopy (WCE)
images (Gatoula, Dimas, Iakovidis, & Koulaouzidis,
2021), these studies often include a limited number
of participants, making any generalization difficult.
This may be due to the novelty of the approach and
the difficulty of recruiting medical experts for an
eye-tracking experiment, as they are already swamped.
In this article, we aimed to go beyond these limitations
by recording the eye-tracking data of 22 participants,
including 10 medical experts, while they performed
a medical image classification task. We also trained
state-of-the-art deep convolutional neural networks
on the same task and computed its post hoc visual
attention maps with different methods. This allowed us
to compare the visual exploration strategies between
human novices and human experts, as well as human
versus machine visual attention maps.

Method

Medical image classification task: Detection of
Crohn’s disease lesions

In early 2000, the development of the video capsule
endoscopy (VCE) allowed the complete examination
of the small intestine (Iddan, Meron, Glukhovsky,

& Swain, 2000). This led to an improvement in the
diagnosis of Crohn’s disease (CD) and its early
treatment (Eliakim, 2017) by enabling the direct
assessment of the small bowel lesions (Gal, Geller,
Fraser, Levi, & Niv, 2008). Although the importance
of VCE is established, it is not yet widespread for
the diagnosis of Crohn’s disease, and x-ray imaging
with contrast, MRI, sonography, and traditional
endoscopy are often preferred (Chen, Zhou, &
Weltman, 2018). One of the main reasons is the
extensive time required to review the VCE images.
Each endoscopic video examination generates between
50,000 and 60,000 images and lasts several hours (from
two to six frames per second). On average, the review
time of a video by a gastroenterologist is estimated
between 30 and 60 minutes (McAlindon, Ching, Yung,
Sidhu, & Koulaouzidis, 2016). The review time is
much shorter than the actual video duration because
gastroenterologists know where to look and can skip
the least relevant segments. The time-consuming nature
of this task increases the demand for algorithms that
would allow gastroenterologist experts to save time
on their diagnosis and focus on the treatment of the
disease.

Machine training and attention extraction

Dataset for training
We created a publicly available dataset CrohnIPI,

which contains 3,498 labeled images from VCE (de
Maissin et al., 2021). The image resolution was 640 ×
640 pixels. These images have been carefully annotated
in three different phases. The first phase was realized
by a first expert who selected VCE images from 63
different patients with Crohn’s disease. In the second
phase, each image was independently labeled by three
different experts. In the third phase, the three same
experts reached a consensus on the images that they
classified differently in the second phase (41% of the
original dataset with at least one discordant observer).

Deep neural network for VCE image classification
Based on our publicly available dataset, we trained

three state-of-the-art deep convolutional neural
networks, VGG16, VGG19 (Simonyan & Zisserman,
2015), and ResNet34 (He, Zhang, Ren, & Sun, 2016),
to classify images between two different classes:
pathologic and nonpathologic. Pathologic images
contained at least one of these seven Crohn-related
lesions: erythema, edema, ulceration between 3 and 10
mm, ulceration over 10 mm, aphthoid ulceration, and
stenosis. Nonpathologic images did not contain any
lesions. To train each neural network, we used the entire
dataset, split into two subsets: 80% for the training
phase and 20% for the validation one. The networks
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have been trained on ImageNet, except for the output
classification layer, which has been initialized randomly.
Then we fine-tuned the networks on the 3,500 images of
the CrohnIPI dataset. No learning rate decay has been
used, as it did not show any improvement compared to
a fixed learning rate. The networks have been trained
for a maximum of 60 epochs, with an early stop in case
of 20 epochs without improvement on the validation
set.

The network was then tested on the 250 images that
compose the eye-tracking dataset. The ground truth was
defined as the majority vote of both junior and senior
doctors between the pathologic and the nonpathologic
classes. We grouped all the Crohn-related lesions
under the same pathologic label for both humans
and machine. The accuracy of the eye-tracking image
dataset, with 10 times cross-validation, is 81.4% for
VGG16, 82.2% for VGG19, and 84.1% for ResNet34.

Post hoc attention extraction
To create artificial attention maps, we used six

different post hoc methods: GradCAM (Selvaraju
et al., 2017), guided GradCAM (Selvaraju et al., 2017),
guided back-propagation (Springenberg et al., 2015),
vanilla gradients (Simonyan et al., 2013), Score-CAM
(Wang et al., 2020), and Randomized Input Sampling
for Explanation (RISE) (Petsiuk, Das, & Saenko, 2018).

The GradCAM method uses activation maps
weighted by importance coefficient. The vanilla
gradients and the guided back-propagation method are
based on the same idea: computing the gradient of the
output with respect to the input. The difference between
those two is that for the guided back-propagation
method, we only compute the positive gradients.
Thus, the gradient method shows the pixel that
contributes the most to the output, whereas the
guided back-propagation method only shows pixels
that contribute positively to the output. The guided
GradCAM method is the guided back-propagation
method weighted by the GradCAM map.

Contrary to the first four methods, Score-CAM
and RISE are not gradient based. They address some
of the problems present in gradient methods like the
presence of noise in saliency maps caused by gradient
saturation/evanescence or the potential overemphasis
on specific feature maps. Score-CAM assigns weights
to individual feature maps based on the class score
observed when masking the areas activating the maps.
RISE involves dividing the image into a rectangular
grid and calculating random binary masks. This
procedure of masking the image and measuring the
score variation is repeated several thousand times in
practice to estimate which areas of the image, when not
masked, lead to the largest class score and thus are the
most important for the decision.

We applied a Gaussian blur on all the back-
propagation methods. The only method that can
produce negative values is the vanilla gradient. In this
case, we took the absolute value of the maps. For
a more complete description of these methods, see
Appendix D.

Human attention dataset

To quantify the human attentional behavior on a
medical classification task, we realized an eye-tracking
experiment as described in the following section. To
avoid the pitfalls when comparing human and machine
attention, we specifically designed choices as explained
in the discussion section.

Participants
We recorded the gaze of 23 participants. Eleven

were senior gastroenterologists with over 5 years
of experience, each having reviewed more than 100
video-capsules (VCE) in their careers. Five were junior
doctors with fewer than 100 VCEs reviewed and
between 1 and 5 years of experience. The remaining
seven were novices who had never seen any bowel
images. With around 30,000 images per VCE, 100 VCEs
represent approximately 3 million images, a significant
number that is typically only reached by senior doctors.
We removed one of the senior gastroenterologists due
to repeated calibration failures. The analyses were
performed on a final group of 22 participants (13 males,
9 females). We are aware that 11 experts is considered
a low sample size to conduct inferential statistical
analyses. We justify this number by the considerable
challenge of finding medical experts able to spare time
for a behavioral experiment. To gather this dataset,
we had to set up an itinerant eye-tracking system and
visited several university hospitals in France over 1 year.

To assess how this sample size affects interobserver
consistency, we quantified the similarity between
experts’ attention maps in a leave-M-out setting,
where all but M subjects are used to compute an
average attention map, which is then compared to the
attention map of the left-out expert. We used Pearson’s
correlation coefficient (CC) to compare the maps;
see Metrics. By varying the M, we obtained a curve
of scores that shows a saturation effect for small M,
indicating that adding more experts to the dataset
would not drastically impact interobserver consistency;
see Figure B2. We bootstrapped this analysis 10 times,
randomly permuting the order of the left-out experts,
and took the average over these 10 permutations.

Stimuli
The stimuli consisted of 250 VCE images from

two patients diagnosed with Crohn’s disease. From
these two patients, we created a representative and
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balanced panel of images encountered in patients with
Crohn’s disease. Crohn’s lesions are quite stereotypical;
they do not significantly vary between patients. The
image resolution was 640 × 640 pixels. To limit the
imbalance between the number of pathological and
nonpathological images, they were selected by an expert
who did not participate in the experiment. To label the
images as pathological or not pathological, we used the
15 senior and junior doctors votes on each image. When
a Crohn-related lesion was detected the corresponding
image was labeled as pathological; otherwise, it was
labeled as not pathological. The “I don’t know” option
corresponded to an abstention. In total, 58.0% of
the images were classified as nonpathological, 40.8%
as pathological, and 1.2% as indeterminate (three
images). The three indeterminate corresponded to the
images where the number of votes for pathological and
nonpathological classes was equal. They were removed
from the next analyses.

Experts and novices
Based on this ground truth, we ranked all the

participants based on their correct classification score.
Participants with an accuracy score above 80% formed
the expert group (11 participants). The other 11
participants formed the novice group. As expected, all
novices were classified in the novice group, but also
one senior and three junior doctors (see in Table A1 in
Appendix A). The novice group has a mean accuracy
of 65.0% (SD = 9.4%), mean specificity of 55.7% (SD
= 16.8%), and mean sensitivity of 77.9% (SD = 18.8%).
The expert group has a mean accuracy of 91.1% (SD
= 3.9%), mean specificity of 90.9% (SD = 7.8%), and
mean sensitivity of 91.5% (SD = 4.7%).

Note that the task at hand in our study was not to
diagnose Crohn’s disease but to tell whether the image
contained a Crohn-related lesion. As a comparison, in
various clinical contexts, VCE diagnostic performance
for Crohn’s disease has been shown to vary from 49%
to 77% (average = 61%) (Yang, Keum, & Jeen, 2016).

Apparatus
The stimuli were displayed on a DELL P2417H

monitor at 60 Hz (1,920 × 1,080 pixels). The screen
size was 52.7 cm by 29.6 cm. Eye-tracking data were
recorded at 60 Hz with an eye tracker, “The EyeTribe.”1
Participants sat 60 cm away from the screen.

Procedure
The experiment workflow is described in Figure 1.

The experiment consisted of two phases of
approximately 20 minutes, with a mandatory break in
between. Each phase consisted of reviewing 125 images.
Images were presented in a different random order for
every participant and independently of their clinical

context, in the center of the screen. The participants
could take a break after each image. No feedback was
given to participants, preventing them from learning
during the experiment. A 9-point calibration procedure
was realized at the beginning of the experiment, after
20 successive images, and after a break. Between
each image, a drift correction was also performed, to
prevent a possible drift of the measurement device. The
drift correction phase consisted of fixating a central
fixation cross. If the gaze of the participant landed on
the cross for at least half a second, the stimulus was
displayed; otherwise, a new calibration was initiated.
The stimulus was then displayed for 2 seconds during
which eye-tracking data were recorded. When the image
disappeared, a checkbox was displayed, asking the
participant whether the image contained a pathological
Crohn-related lesion.

Eye-tracking data processing
The eye-tracker raw data consist of timestamp t and

position (x, y) for each sample. As the sequential nature
of human gaze behavior does not have an equivalent
in neural network post hoc attention, in our study, we
focused on the spatial information. We parsed the eye
positions into binary fixation maps (pixel = 1 if fixated,
0 otherwise) and continuous fixation maps (attention
maps). The attention maps were obtained by convolving
a two-dimensional (2D) Gaussian kernel across the
fixation locations of each observer. Examples can be
found in Figure 2.

Metrics

To compare the spatial distributions of attention,
we used two metrics widely used to compare gaze and
attention spatial distributions (Bylinskii, Judd, Oliva,
Torralba, & Durand, 2019).

• Normalized scanpath saliency (NSS): The NSS is
the average of the values of the z-scored attention
map at the fixation locations (Peters, Iyer, Itti, &
Koch, 2005). It is defined by the following equation,
with a given attention map P, a binary fixation map
QB, and i the index of the ith pixel:

NSS(P,QB) = 1
N

∑
i

Pi × QB
i

where

N =
∑
i

QB
i

and

P = P − μ(P)
σ (P)
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Figure 1. Design of the eye-tracking experiment.

NSS = 0 means that the fixations and the attention
map are unrelated, NSS > 0 means that they are
positively related, and NSS < 0 means that they are
negatively related.

• Pearson’s correlation coefficient (CC): This metric
quantifies the linear relationship between two
variables. It is defined by the following equation,
with two attention maps P and Q.

CC(P,Q) = σ (P,Q)
σ (P) × σ (Q)

Results

Figure 2 shows examples of human and artificial
attention on different images of the eye-tracking

dataset. All these artificial attention maps are obtained
on ResNet34 trained on the CrohnIPI and tested on our
eye-tracking image dataset. Even if these methods rely
on quite different approaches (e.g., gradient-based vs.
not gradient-based), we observe a certain consistency
between the artificial attention maps.

To analyze the associations between metric scores,
image labels, and level of expertise, we will use linear
mixed models with metric scores as dependent variables;
label, expertise, and their interaction as fixed effects;
and images and observers as random effects. This
section is divided into two parts. First, we focus on the
differences in attention distribution between the expert
and nonexpert human groups. We show that the image
label (pathological or not) and the expertise level of the
participant have a significant influence on the spatial
distribution of human visual attention. Second, we
compare artificial and human attention maps.
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Figure 2. Examples of machine and human attention maps on different images of the eye-tracking dataset. The predictions
(pathological or not) are computed with ResNet34 trained on the CrohnIPI dataset. The artificial attention maps are computed with six
different methods from the same deep neural network training. The last column corresponds to the eye positions of a human expert.

Effect of expertise and image label on human
gaze behavior

In this section, we compare how experts and novices
move their eyes across pathological and nonpathological
images.

Dispersion and distance to center
The average distance to the screen center and the

average gaze dispersion are two simple and highly
interpretable metrics to quantify a participant’s gaze
behavior.

The distance to the center can represent how active
a participant has been during the exploration of a
stimulus. If the participant is passive, they will likely
stay near the image center waiting for the experiment to
move on, while a more proactive participant will have a
more dynamic gaze behavior and explore areas further
away from the screen center. The dispersion of the eye
positions quantifies how the participant spread their
attention over the stimuli. If the participant scattered
their eye positions all over the image, the dispersion
will be high. If the participant focuses on a specific
area, the dispersion will be low. For each metric, we
computed a linear mixed model with expertise (expert,
not expert), label (pathological, not pathological), and
their interaction as fixed effects, with random intercepts

for each participant and image: score ∼ expertise*label
+ (1 | participant) + (1 | image).

For the distance to center, the label effect was not
significant t(1, 5,994) = 1.2387, p = 0.21, Cohen’s
d = 0.04, 95% CI [−0.02, 0.09], nor was the effect
of expertise, t(1, 5,994) = −0.896, p = 0.37, Cohen’s
d = 0.21, 95% CI [0.16, 0.27]. However, we found
a significant effect of the interaction, t(2, 5,994) =
−2.1866, p = 0.03. For the dispersion, the effect of
the label was significant t(1, 5,994) = −6.1922, p <
0.001, Cohen’s d = 0.27, 95% CI [0.22, 0.32], but
not the effect of the expertise, t(1, 5,994) = −1.183,
p = 0.23,Cohen’s d = 0.16, 95% CI [0.11, 0.21]. We
found a significant effect of the interaction, t(2, 5,994)
= 5.33, p < 0.001. As shown in Figure 3, the dispersion
is higher in nonpathological images than in pathological
images for both experts and nonexperts, and this
effect is stronger in experts. This can be interpreted as
the lesions present in pathological images attracting
attention, hence decreasing the dispersion. The experts
are more likely to spot them, and this effect is logically
strengthened in this group.

The distance to the center and the gaze dispersion
coarsely quantify gaze behavior but cannot tell whether
observers specifically attended the same locations.
In the next section, we will compare the spatial
distribution of attention with the metrics previously
introduced.
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Figure 3. Association between gaze dispersion, level of
expertise, and image label. Gaze dispersion corresponds to the
variance of eye positions. The boxes represent the upper and
lower quartiles around the median. The dashed line
corresponds to the highest median value. The transparent
curves represent the distributions of the data points.

Figure 4. Comparison of human attention maps. The similarity
between attention maps is assessed by the normalized
scanpath saliency score (NSS; higher means closer distributions
of attention). For pathological and nonpathological images. The
“novices vs. novices” and “experts vs. experts” labels
correspond to the intragroup comparisons. The “experts vs.
novices” label corresponds to the intergroup comparison.

Comparison of the attention maps between humans
For pathological and nonpathological images,

we assessed the effect of expertise on the spatial
distribution of attention through two types of
comparison: intragroup and intergroup; see Figure 4.

For the intragroup comparison (see boxplots “novices
vs. novices” and “experts vs. experts”), we created a
reference attention map by averaging the attention
maps of every member of a group excluding the one
being processed (leave-one-out procedure). Thanks to
the saliency metrics, we obtained two scores (NSS, CC)
for each subject, on each image, indicating whether
the subject on a given image was watching the same
areas as the members of their group. We also realized
an intergroup comparison, by averaging the maps
of one group and comparing this map with all the
maps of the other group. In the following, we give
the results with the NSS score, but the results with
CC were similar and are available in see Figure B1 in
Appendix B.

As for the dispersion and distance to the center, we
computed for the NSS score a linear mixed model with
label, expertise, and their interaction as fixed effects and
images and observers as random effects. We found a
significant effect of image label, t(1, 10,776) = 11.62, p
< 0.001, Cohen’s d = 0.57, 95% CI [0.53, 0.61], and of
its interaction with the expertise level of observers, t(2,
10,776) = −14.01, p < 0.001. The effect of expertise
was not significant, t(1, 10,776) = −0.17, p = 0.86.
As shown in Figure 4, the NSS score was higher for
pathological images than for nonpathological ones.
This shows that on pathological images, the spatial
distribution of visual attention is more similar across
observers than on nonpathological images. This could
be due to the presence of lesions guiding the attention
to the same areas.

To further investigate the interaction between label
and expertise, we computed two independent linear
mixed models with expertise as a fixed effect and
random intercepts for participants and images. The first
one only uses pathological images, and the second one
only uses nonpathological images.

We found a significant effect of expertise with
pathological images (t(1, 4,442) = −2.36, p = 0.02), but
not with nonpathological images (t(1, 6,334) = −0.21,
p = 0.83). In terms of effect sizes, on pathological
images, “experts/experts” vs. “novices/novices,” Cohen’s
d = 0.37, 95% CI [0.28, 0.45]; “experts/experts” vs. “ex-
perts/novices,” Cohen’s d = 0.51, 95% CI [0.43, 0.60];
“novices/novices” vs. “experts/novices,” Cohen’s
d = 0.24, 95% CI [0.15, 0.32]. On nonpathological
images, “experts/experts” vs. “novices/novices,” Cohen’s
d = 0.09, 95% CI [0.02, 0.16]; “experts/experts” vs. “ex-
perts/novices,” Cohen’s d = 0.05, 95% CI [0.02, 0.12];
“novices/novices” vs. “experts/novices,” Cohen’s
d = 0.15, 95% CI [0.08, 0.22]. This could be interpreted
as an effect of the pathological lesions drawing the
attention of the experts to the same areas, while the
nonexperts are less guided by them. On nonpathological
images, there is nothing to guide the spatial visual
attention of either experts or nonexperts, hence no
differences between groups.
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novices experts machine

ex
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0.26 0.27 0.07

0.35 0.13

novices experts machine

0.20 0.15 0.01

0.18 0.02

no
vi

ce
s

Pathologic Non Pathologic

Table 1. Proportion of shared variance between the attention
maps of human novices, human experts, and the ResNet34
model extracted with the vanilla gradient algorithm. The
higher the value, the more similar the attention maps.

Machine versus human attention maps

In this section, we compare the human and machine
attention maps. As described previously, we used six
different post hoc methods to compute for each image
the map of the pixels involved in the decision-making
process of three different deep neural networks. We
detail the results with the vanilla gradient method
and ResNet34, but other machine attention extraction
methods (guided back-propagation, GradCAM, guided
GradCAM, RISE, and Score-CAM) applied on other
networks (VGG16 and VGG19) lead to similar results.

With the vanilla gradient method
Here we compare the human and artificial attention

maps. We used the gradient method to obtain for each
image the map of pixels involved in the decision process
of the ResNet34 deep neural network.

In Table 1, we show the proportion of shared
variance between the attention maps of human novices,
human experts, and the ResNet34 model extracted
with the vanilla gradient algorithm. The proportion

of shared variance corresponds to the average squared
coefficient of correlation between pairs of attention
maps. Consistently with Figures 4 and 5, attention
maps are more similar when they contain a pathologic
lesion and when comparing attention maps between
human experts (35% of shared variance). The amount
of shared variance between human and machine
attention is very low for nonpathological images (1%
and 2% for novices and experts, respectively). It is
higher for pathological images, and machine attention
is two times more similar to experts (13%) than to
novices (7%). This is consistent with the classification
performance of the deep learning model, which is
closer to that of the expert group than to that of the
nonexpert group (accuracy = 84.1%, see in Table A1 in
Appendix A). We also ran the same analysis, but instead
of computing pairwise attention map comparisons, we
computed for each expert (resp. novice) the correlation
between their attention map and the average attention
map of all other experts (resp. novices). This led to
similar results. On nonpathological images, the shared
variance between experts was 26%, same as between
novices. On pathological images, the shared variance
between experts was 39%, while between novices, it was
29%.

To assess the statistical significance of these results,
we computed the same linear mixed model as in
Dispersion and distance to center and Comparison
of the attention maps between humans (fixed effect:
label, expertise, and their interaction; random effect:
images and observers), this time for the NSS score
between the machine and human attention maps. This
model is applied to 55,000 observations (250 images
× 22 observers × 10 cross-validations). As shown in
Figure 5, the same effects as in the human attention
comparison are visible. We found that the label has a

Figure 5. Comparison of the similarity between the spatial distribution of human and machine attention (higher NSS or correlation
coefficient [CC] means more similar), for pathological and nonpathological images. The label “machine vs. nonexpert” corresponds to
the comparison between the nonexpert group and the artificial attention extracted by the gradient method. The label “machine vs.
experts” corresponds to the same comparison with the group of experts. These results were obtained for the ResNet34 network and
the vanilla gradient attention extraction method.

Downloaded from hwmaint.iovs.org on 04/24/2024



Journal of Vision (2024) 24(4):6, 1–27 Vallée et al. 10

significant effect on the NSS score, t(55,000) = 10.508,
p = 1e-26, Cohen’s d = 0.66, 95% CI [0.65, 0.68], with
more similar attention maps for pathological images
than for nonpathological images. We did not find an
effect of human expertise on the NSS score, t(55,000) =
−1.00, p = 0.31, Cohen’s d = 0.22, 95% CI [0.20, 0.24].
As expected, both artificial and human attention
distributions are quite dependent on the image content.

To better understand the interaction between
label and expertise on the comparison between
artificial and human attention, we computed two
independent linear mixed models with expertise as a
fixed effect and random intercepts for participants
and images. The first model uses only pathological
images and the second only nonpathological images.
For both models, we find a significant effect of
expertise with t(22,440) = −2.7379, p = 0.006,
Cohen’s d = 0.34, 95% CI [0.31, 0.36] for pathological
images and t(22,440) = −2.0972, p = 0.04, Cohen’s
d = 0.12, 95% CI [0.09, 0.14] for nonpathological
images.

We verified that these results hold when controlling
for interobserver consistency. Indeed, a strong
heteroscedasticity between experts’ and novices’
attention maps could bias the results. We computed
the same linear mixed models as above, adding the
dispersion displayed in Figure 3 as a fixed effect. As in
the previous paragraph, we find a significant effect of
expertise with t(22,440) = −3.05, p = 0.002, Cohen’s d
= 0.34, 95% CI [0.31, 0.36] for pathological images and
t(22,440) = −2.25, p = 0.02, Cohen’s d = 0.12, 95% CI
[0.09, 0.14] for nonpathological images. Another way to
look at these results is to notice that on pathological
images, the machine attention accounts for 0.13/0.35
= 37% of the between-expert explainable variance,
while only accounting for 27% of the between-novice
explainable variance. On nonpathological images, the
machine attention accounts for 0.02/0.18 = 11% of
the between-expert explainable variance, while only
accounting for 5% of the between-novice explainable
variance.

The results observed with the ResNet34 network
are consistent with the results obtained with the
VGG16 and VGG19 networks. A significant label effect
is present on all data (VGG16: t(55,000) = 12.687,
p = 7e-37; VGG19: t(55,000) = 14.338, p = 1e − 46),
and an expertise effect is visible on pathological images
(VGG16: t(22,440) = −2.3538, p = 0.018; VGG19:
t(22,440) = −2.3509, p = 0.018).

With other machine attention extraction methods
Our results are stable across deep neural networks

and artificial attention extraction methods. The different
linear mixed models were calculated for the three
deep neural networks and for the three other methods
of post hoc attention extraction. The comparisons

between human attention and machine attention
extracted with the other methods are presented in
Figure 6. The results with the NSS metric are shown
in Figure C1 in Appendix C. For these methods of
post hoc attention extraction, we observe a significant
effect of the label on all the images and a significant
effect of the expertise on the pathological images.
However, it is only with the gradient method that
the effect of expertise on nonpathological images is
significant. The effect of expertise on pathological
images is less strong for the other methods than for the
gradient method. With the guided back-propagation
method, we obtain a significant label effect on the
NSS score with t(55,000) = 12.015, p = 3e-33. When
the test is performed only on pathological images, an
effect of expertise is also significant with t(22,440) =
−2.2355, p = 0.025. For the GradCAM method, the
effect of the label is significant on all the images on the
NSS metric with t(55,000) = 9.1345, p = 6e-20, and
an effect of the expertise visible on the pathological
images t(22,440) = −2.085, p = 0.0370. For the guided
GradCAM method, the effect of the label as for the
other models is significant on the NSS metric, t(55,000)
= 9.1059, p = 8e-20, and an effect of the expertise
is significant on the pathological images, t(22,440) =
−2.085, p = 0.037.

The results of the different methods on VGG16 and
VGG19 with the CC and NSS metrics are shown in
Figure C2 and C3 in Appendix C.

Evolution of the similarity between human and
machine attention across learning

In the previous section, we saw that the behavior of
artificial attention was closer to the attentional behavior
of experts on pathological images. As the performances
of the three deep neural networks are closer to those of
the experts than those of the novices, we will question
here the influence of the network performances on
this comparison. We saw in the section “Human
comparison” that participants with higher image
classification performances tend to look at the same
areas. Thus, by comparing attentional maps extracted
at different times during training and therefore on
networks with different levels of performance, we seek
to verify the hypothesis that attentional behaviors
evolve with the level of expertise of the network
and that the higher their performance, the closer its
attentional behavior is to the behavior of an expert.

To test this hypothesis, we recorded the weights of
the networks at different times during their training
on the CrohnIPI database. For each network, weights
were recorded for the first 10 epochs, as well as
for the initial state where the network is pretrained
on ImageNet. Weights were then recorded every 5
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Figure 6. Comparison of the similarity between the spatial distribution of human and machine attention (higher correlation
coefficient [CC] means more similar), for pathological and nonpathological images. The label “machine vs. nonexpert” corresponds to
the comparison between the nonexpert group and the artificial attention extracted by the different methods. The label “machine vs.
experts” corresponds to the same comparison with the group of experts. These results were obtained for the ResNet34 network.

epochs until 50 epochs after the network reached the
minimum error on the validation set. For each of the
10 cross-validations performed for each of the three
networks, the attentional maps obtained with each of
the four methods were compared with the maps of all
22 participants in the eye-tracking experiment.

To further investigate the relationship between
expertise and attentional behavior, we computed
artificial attentional maps at different time points
during network formation and performed the same
comparison with human attention maps. Figure 7
shows that as the network becomes more accurate,
its artificial attention maps (vanilla gradient) become
closer to the attention maps of human experts. The
similarity between artificial attention maps and human
novices’ attention maps also increases with network
accuracy but at a slower rate. The same observation can
be made when varying the sensitivity of the network
and across the training process, but not its specificity
due to a ceiling effect.

A scattering effect can be observed on the
comparison across learning and be attributed to

diverse factors. Foremost, the instability of the
training process can play a role in the observed
phenomenon, and this effect could have been mitigated
by lowering the learning rate. The instability of
artificial attention over training can further increase
this phenomenon. Indeed, nonpathological images
do not contain specific cues, challenging the network
to keep a consistent attentional behavior. However,
when we look at the evolution of comparison in the
context of pathological images, the scattering is more
moderate, with SD = 0.00916 on pathological images
compared to SD = 0.0212 on all images (measurement
produced on comparison with experts function of
accuracy).

Similar results were obtained for the other artificial
attention extraction methods and the other networks
(see Figures E1 to E3 of Appendix E).

This validates our hypothesis: There is a relationship
between the expertise of humans and machine and their
attentional behavior. The higher the performance of the
machine, the closer its attentional behavior is to human
experts.
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Figure 7. Association between the performance of the network and the similarity between its attention maps and the attention maps
of human experts and novices. The higher the NSS, the more the attention maps of the network are similar to the humans’. Each
point corresponds to the average NSS for all the images according to the performance reached during the training of the network.
The curves correspond to linear regressions for novices and experts. The artificial attention is computed with the vanilla gradient
method on the ResNet34 network. Similar curves for the other artificial attention extraction methods are available in Appendix D.

Discussion

We built a carefully labeled image dataset for
a specific medical imaging classification task. We
recorded and compared the visual attention of medical
experts, novices, and deep neural networks while
performing this classification. Several biases have been
identified in the literature when comparing human
and machine visual perception (Lai et al., 2020). To
avoid them, we tried to design the human and machine
classification tasks as closely as possible. First, since
the number of parameters was identical for each
image, we were able to fix the number of computations

performed by the network. Assuming that the number
of computations performed almost simultaneously
by the machine corresponds to the image viewing
time for humans, we also set the same viewing time
(2 seconds) for each image. Then, each image was
visualized by the network independently of the previous
and following images, and without any information
about the patient. Similarly, we presented the images
to humans independently of their clinical context
and in a different random order for each participant.
Third, the parameter values were fixed and calculated
from previous training on our dataset. Similarly, no
feedback was given to participants, preventing them
from learning during the experiment.
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We found that visual attention strategies were
more similar between experts than between novices.
This indicates that high performance in our medical
diagnostic task correlates with a specific attentional
behavior. We compared expert attention with artificial
attention, which was extracted from state-of-the-art
convolutional neural networks with six different
post hoc attention extraction methods. We showed
that as the network’s performance gets closer to the
performance of the experts, its attention maps also get
more similar to the attention maps of experts, mainly on
pathological images. This correlation was strengthened
when the network improved in the classification task.

We were surprised by the performance of some
novices well above chance, even without any feedback
from the experimenters. It might be interesting to
evaluate the evolution of their performance throughout
the task with an unsupervised deep learning algorithm.
Novices, when evaluating endoscopic images, initially
learn to distinguish normal from abnormal images and
then group abnormal images into subcategories.

The comparison of the different methods of post
hoc attention extraction allows us to evaluate the one
most likely to help medical experts in their diagnosis.
Faced with a ground truth composed of oculometric
data from medical professionals, we observe that the
results obtained by the different methods are not equal.
It is possible to classify them from the most to the
least similar to human attention given the different
experiments performed: first the gradient method, then
the guided back-propagation method, followed by
guided GradCAM, and finally GradCAM.

In the article by Adebayo et al. (2018), a comparison
of post hoc attention methods was performed through
two tests. The first test consisted of comparing the
maps obtained for a randomly initialized network
and for a network trained on a specific task. If the
method was effective, the obtained salience results
should have been different, showing that the method
was dependent on the model’s parameters. The second
test consisted of training two similar models on a
dataset containing the same images but whose labels
have been randomly swapped for the second. Through
this experiment, the authors sought to identify whether
the attention extraction method was indeed sensitive
to the relationship between image and label. They
concluded that, among the different methods of
artificial attention extraction, only the gradient method
and the GradCAM method passed both tests.

Here, we show that the artificial attention maps
obtained with the gradient method are closer to
the attention maps of experts than to the attention
maps of nonexperts, on both pathological and
nonpathological images. The presence of an effect of
expertise on nonpathological images can be explained
by the fact that, unlike other methods that only
account for the parts of the image that contributed
positively to the prediction, the gradient method also

accounts for the elements that decreased the final
prediction score. Although the algorithm answered
“not pathological,” the method shows areas that
made it doubtful and thus allows us to account for
recognition errors. For the other methods, all the
errors are assimilated to detection errors, since the
parts “observed” by the network but that did not
lead to the conclusion of a presence of pathology are
erased by applying a ReLU on the gradients. It can
be observed in Figure G1 in Appendix G that for the
gradient method and unlike the other methods, the
difference between artificial and human attentional
behaviors is small (i.e., the NSS is high) on the false
negatives. Although the image has been misclassified
by the network, its attentional behavior is as close to
experts’ as if the image was pathological and correctly
classified.

We also performed a stability test across each method
by observing if different trainings lead to different
artificial attention maps. To do so, the attention maps
of the networks were computed for each of the six
methods, for each of the three networks, and for five
distributions of the training data. Once these maps
were computed, we used the Pearson correlation
coefficient (CC) to evaluate for a given network, for
a given method, and for each image if the networks
pay attention to the same areas according to the
network initialization. Thus, for each of the maps
obtained, for each of the five distributions, the CC
was calculated with the four other maps obtained with
the other distributions. The more stable the attention
maps are from one initialization to another, the closer
the correlation score (CC) is to 1. The results of this
experiment show that the gradient method is more
stable on pathological images than the three other
methods. All the scores of this experiment are presented
in Appendix F. This stability across the training set is
important as it guarantees that its artificial attention
maps truly are indicative of the algorithm’s decision
process.

A critical difference between our experimental
design and the reality of the clinical practice of
gastroenterologists is the way VCE images are
presented. We sequentially presented 250 independent
images, 2 seconds per image, while gastroenterologists
usually look at a sequence of consecutive frames
that they can pause, rewind, or accelerate. Hence,
gastroenterologists have access to the context of each
image (what is just before and just after), which is
likely to modify the way they look at it compared to an
isolated image. This difference between our experiment
and doctors’ real-life practice might attenuate the effect
of their expertise. Future studies could focus on how
this contextual effect impacts attentional deployment,
both in humans and in machines.

Keywords: attention, eye tracking, deep learning,
medical imaging
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Appendix A: Performances of each
participant on the classification
task

Participant ID
Accuracy

(%)
Specificity

(%)
Sensitivity

(%)

Novices
Random people 7 44.3 24.4 73.1
Random people 4 55.1 66.9 38.2
Random people 3 58.6 47.9 74.0
Random people 5 61.9 39.3 94.1
Junior doctor 4 64.9 53.2 81.0
Senior doctor 4 71.7 49.6 100
Random people 1 69.3 52.4 93.9
Junior doctor 1 69.7 49.7 98.0
Random people 2 69.8 77.1 59.4
Random people 6 73.2 78.6 65.3
Junior doctor 2 76.1 73.2 80.2

Experts
Senior doctor 2 80.8 69.3 97.0
VGG16 81.4 98.6 59.4
VGG19 82.2 97.5 60.6
Senior doctor 8 93.7 96.8 89.7
ResNet34 84.1 98.1 66.6
Senior doctor 5 89.9 87.9 92.8
Senior doctor 9 92.1 91.4 93.0
Junior doctor 5 90.2 94.4 84.2
Senior doctor 6 93.4 89.4 99.0
Senior doctor 7 93 95.9 88.8
Senior doctor 10 91.5 93.1 89.2
Senior doctor 3 93.9 97.9 88.1
Senior doctor 1 94.7 93.1 97.1

Table A1. Participants and networks image classification
performance (pathologic or nonpathologic). Participants (and
networks) were assigned to the expert group if they had at least
80% accuracy. Otherwise, they were assigned to the novice
group. Values in bold correspond to the performance of deep
neural networks.

Appendix B: Attention between
humans with CC

We ran the same analysis with correlation coefficient
(CC) as for NSS and found similar results. We found a
significant effect of image label, t(10,776) = 12.298, p <
0.0001, and of its interaction with the expertise level of

Figure B1. Illustration of the distribution of CC over human
attention comparison, grouped by labels. The “novices vs.
novices” label corresponds to the intranovice comparison,
scoring at what point novices are looking at the same image
areas. “Experts vs. experts” is the same as the “novices vs.
novices” one inside the expert group. The “experts vs. novices”
label corresponds to the intergroup comparison, scoring at one
point experts and novices glimpse the same areas.

Figure B2. Effect of leaving M human experts out on
interobserver consistency. The 10 colored lines correspond to
different random permutations of the left-out experts. The
black line corresponds to the average over the 10 colored lines.
Error bars correspond to the standard errors.

observers, t(10,776) = −11.813, p < 0.0001. The effect
of expertise was not significant, t(10,776) = 0.86, p =
0.38. When we computed the same linear mixed model
on only pathological images, we found a significant
effect of the expertise: t(4,442) = 12.298, p = 0.05.
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Appendix C: Artificial vs. human
attention for different methods for
different networks with NSS and CC

Figure C1. Comparison of artificial attention extracted with different methods with human attention as a function of expertise level
and image label. These results were obtained for the ResNet34 network and the comparison was performed using the NSS metric.
The higher the NSS score, the closer the areas of attention between machine and humans are.

Figure C2. Comparison of artificial attention extracted with different methods with human attention as a function of expertise level
and image label. These results were obtained for the VGG16 network, and the comparison was performed using the CC metric. The
larger the CC score, the closer the areas of attention between machine and human are.

Downloaded from hwmaint.iovs.org on 04/24/2024



Journal of Vision (2024) 24(4):6, 1–27 Vallée et al. 19

Figure C3. Comparison of artificial attention extracted with different methods with human attention as a function of expertise level
and image label. These results were obtained for the VGG19 network, and the comparison was performed using the NSS metric. The
larger the NSS score, the closer the areas of attention between machine and human are.
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Appendix D: Post hoc attention
methods description

The goal of post hoc attention extraction algorithms
is to allow visualization of the parts of the input that
lead to the final decision, focusing on the information
contained in the model. This type of attention is
extracted post hoc, the supervised learning algorithm
having already been trained on a dataset beforehand.
These methods do not require retraining and additional
optimization steps. Three types of methods can be
found: perturbation methods, back-propagation
methods, and methods based on the activation of
feature maps.

GradCAM

GradCAM is an algorithm based on the work
of Erhan et al. (2009) and Mahendran and Vedaldi
(2016), which shows that the deeper the convolutional
layer (thus close to the output layer; i.e., the softmax
layer for a classification task), the more high-level
visual constructs it captures. Thus, by focusing on the
information captured by the last convolutional layers,
it extracts semantic information specific to each of the
classes and, by the spatial nature of the convolution
operation, determines the attention areas of a deep
neural network. To do this, it uses the information that
flows in the last convolution layer: the activation maps
obtained during propagation (see Figure D2) and the
gradients obtained during back-propagation.

The gradients are used to compute the importance
of each of the activation maps Ak by computing the
scalars αc

k. This coefficient is specific to a class c and
an activation map k. Thus, we compute the gradient of
the output yc before the softmax layer with respect to
the activation map Ak. The obtained gradients are then
globally averaged (global average pooling in English) as
described in the Figure D1 and in the Equation 1:

αc
k =

Global average︷ ︸︸ ︷
1
Z

∑
i

∑
j

Gradient︷︸︸︷
∂yc

∂Ak
i j

. (1)

Once the importance coefficients αc
k of the activation

maps Ak are computed, the map Lc
GradCAM for a given

class c can be obtained by performing a weighted
combination between these activation maps and their
importance coefficient. In order to obtain only those
maps that contribute positively to the target class c, a
ReLU is applied to this weighted combination. Thus,
through the use of a ReLU, only those features that
contributed to increase the yc output are captured

Figure D1. Diagram of the gradient maps obtained during the
back-propagation, allowing the calculation of the coefficients of
importance αc

k.

Figure D2. Diagram for obtaining feature maps during
propagation.

while ignoring those that decreased it. The features
that contribute negatively to a class are too likely to
belong to another class. This results in the following
Equation 2:

Lc
GradCAM =

Only positive influence︷ ︸︸ ︷
ReLu⎛

⎜⎝
∑
k

Importance coefficient︷︸︸︷
αc
k

Features maps︷︸︸︷
Ak

⎞
⎟⎠ . (2)

Thus, each map will represent the weighted
combination of activations that contributed positively
to the final decision. The coefficients αc

k represent a
partial linearization of the network downstream of A
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and capture the importance of a feature map k for a
given target class c.

The size of the resulting maps thus depends on the
input size and the depth of the target feature volume.
Indeed, these maps have the same resolution as the
activation maps that allowed their computation and are
therefore smaller when the target volume is deep due
to the use of max-pooling in deep convolution neural
networks. In order to visualize the attention areas on
the original image, they are often rescaled by bilinear
interpolation, which induces that their attention areas
are coarser.

Back-propagation algorithms

In the back-propagation algorithms, we can
mention the two most famous ones, close to each
other in the idea, but which have some differences:
the so-called gradients algorithm (also called simple
back-propagation) and the guided back-propagation
algorithm (Springenberg et al., 2015). These methods
apply like the other post hoc attention extraction
techniques to already trained networks and do not
change their weights. They are based on the same idea:
to compute the gradient of the network’s prediction
with respect to the input by keeping the weights fixed.
This allows one to determine which input elements (e.g.,
which pixels in the case of an input image) should be
changed the least to affect the prediction the most. The
difference between these three methods lies in how the
gradients are calculated and how the back-propagation
through the network takes place.

The idea of these methods is to find the weight
matrix of the network wc associating to each pixel of an
input I a score function Sc(I). Thus, we can define with
bc the biases of the network:

Sc(I ) = wT
c I + bc.

The problem with deep neural networks is that the
score function equation Sc(I) is a highly nonlinear
function of I. However, using a first-order Taylor
expansion, in the neighborhood of a given image I0, we
can approximate the previous equation as follows:

Sc(I ) ≈ wc = ∂I
∂Sc

∣∣∣∣
T

I0
I + b,

with w the drift of Sc with respect to I at the operating
point I0.

According to Simonyan et al., 2013: “Another
interpretation of calculating image-specific class
salience using the derivative of the class score is that
the magnitude of the derivative indicates which pixels
need to be modified the least to affect the class score the
most. These pixels can be expected to correspond to
the location of the object in the image.” This can also

be seen as the pixels with the largest magnitude of the
derivative of the score function with respect to a given
image I0 are the ones with the most influence on the
final decision and thus the ones that allow the network
to make its decision.

Gradients

In the gradient method, no changes are applied to
the network, and the gradients are back-propagated to
the input layer. Once the gradient map is obtained, we
calculate the absolute value element by element of this
map of the same dimension as the input image. If the
image has three channels (RGB), we take the maximum
of each channel.

Guided back-propagation
In the guided back-propagation method, as in

GradCAM, we wish to observe only the positive
influence of the weights on a class to avoid the
gradients of another class interfering with the target
class. For this purpose, the architecture of the trained
convolution network is slightly modified. Only the
positive influence of the input pixels on the target class
c is kept. The gradients of the output with respect
to the input are computed by ignoring all negative
gradients. This translates into the implementation
of the method by applying a ReLU on the gradients
during back-propagation. The ReLUs of the model
are exchanged with guided back-propagation ReLUs.
These ReLUs work in a very similar way to the normal
ReLUs during propagation but have the particularity of
also applying to the gradient during back-propagation.
Thus we obtain a map of the pixels contributing
positively to a target class. We recall here that although
the architecture of the network is modified by replacing
the ReLus with guided back-propagation ReLus, the
weights and biases remain unchanged.

Thanks to this algorithm, we obtain a saliency map,
specific to the target class c with the same dimensions,
and the same number of channels as the input image.
If the input image has three channels (RGB), we take
the maximum value of the gradient map on the three
channels.

Guided GradCAM

The guided GradCAM algorithm is, as the name
suggests, a combination of the guided back-propagation
algorithm and GradCAM. Thus, to compute the
importance coefficients αc

k in the target layer k for a
given class c, only positive gradients are used in the
back-propagation by applying a ReLU to the error
signal as in the guided back-propagation algorithm.
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The map computed using the target layer activation
maps weighted by the αc

k importance coefficients will
be used as a mask for the map obtained by guided
back-propagation. This technique has the advantage
of taking into account the activation maps computed
during the propagation while keeping a good resolution
since the final map is of the same size as the input map
as in the guided back-propagation technique.

Score-CAM

Wang et al. (2020) addressed two issues related to the
gradient-based methods GradCAM when explaining
deep image classification networks. The first problem
is the presence of noise in saliency maps caused by
gradient saturation/evanescence. The second problem
is the potential overemphasis on specific feature maps.
To overcome these challenges, the authors introduced
Score-CAM as an alternative approach (Wang et al.,
2020). Score-CAM assigns weights to individual feature
maps based on the class score observed when masking
the areas activating the maps. As with GradCAM, the
saliency map is computed by a pondered mean of the
feature maps:

Score-CAM(x) =
∑
k

ws
kc × f k(x), (3)

where x, ws
kc, and fk(x) are respectively the input image,

the weight of feature map k for class c, and the feature
map k. The weights are computed as follows:

ws
kc = yc(x · Norm(Upsample( f k))) − yc(xb), (4)

where yc(x) is the score of class c with input x, and
xb is a baseline input (e.g., a uniform black image).
The function Upsample resizes the feature map fk to
match the resolution of the input image x, and the
Norm operator is a min–max normalization that sets

the minimum and maximum values of the feature map
respectively to 0 and 1.

RISE

The method called RISE was proposed by Petsiuk
et al. (2018). This method first involves dividing the
image into a rectangular grid H′ × W′ and calculating
Q random binary masks mq ∈ {0, 1}H ′×W ′ , where
mq

i′ j′ ∼ Bernoulli(0.5) and q ∈ [1, ..., Q]. Then, Q
inferences are calculated by applying a different mask
to the image each time:

cq = yc(x · Upsample(mq)), (5)

where the operator Upsample increases the resolution
of the mask using nearest-neighbor interpolation to
match the resolution of the input image and yc(x) is the
score of class c with input x. This procedure of masking
the image and measuring the score variation is repeated
several thousand times in practice to estimate which
areas of the image, when not masked, lead to the largest
class score and thus are the most important for the
decision. The final salience map is a weighted average
of the masks, where the weights are the corresponding
class scores:

S = 1
Q

∑
q

cq × mq. (6)

In this work, we apply RISE on a ResNet architecture
and choose the same mask number used by the authors
of the original RISE paper, which is Q = 8,000. We
tried two mask resolutions: H′ × W′ = 7 × 7 and 14
× 14. We observed that the granularity of the 7 × 7
resolution is insufficient to highlight small objects like
Crohn’s lesions and therefore show only results with the
14 × 14 resolution.
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Appendix E: Artificial attention and
human attention through network
training

Figure E1. Comparison between artificial attention and human attention as a function of the network accuracy. Artificial attention is
obtained with three different post hoc methods: guided back-propagation, GradCAM, and guided GradCAM on three different
networks on ResNet34. Results with VGG19 and VGG16 are similar.
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Figure E2. Comparison between artificial attention and human attention as a function of the network sensitivity. Artificial attention is
obtained with three different post hoc methods: guided back-propagation, GradCAM, and guided GradCAM on three different
networks on ResNet34. Results with VGG16 and VGG19 are similar.
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Figure E3. Comparison between artificial attention and human attention as a function of the network specificity. Artificial attention is
obtained with three different post hoc methods: guided back-propagation, GradCAM, and guided GradCAM on three different
networks on ResNet34. Results with VGG16 and VGG19 are similar.
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Appendix F: Stability experiment

Tables F1 and F2 summarize the stability results for
the CC metric for nonpathological and pathological
images, respectively. The results are consistent with
the ones obtained with NSS. Although for equivalent
networks, the stability results for the different methods
are fluctuating, it is clear that the gradient method is
more stable than the other methods on the pathological
images. A notable difference in stability is also present
between pathological and nonpathological images.
Although trained differently, the networks tend on
average to focus on closer areas when the image
is pathological. This result seems logical because
the pathological images contain localized features
symptomatic of Crohn’s disease.

Method VGG16 VGG19 ResNet34

GradCAM 0.32 (0.30) 0.44 (0.29) 0.20 (0.36)
Guided GradCAM 0.18 (0.26) 0.26 (0.26) 0.25 (0.28)
Guided
back-propagation

0.18 (0.330) 0.121 (0.238) 0.44 (0.23)

Gradients 0.16 (0.26) 0.15 (0.32) 0.37 (0.29)

Table F1. Summary table of the scores obtained with Pearson’s
correlation coefficient (CC) between the attention maps of the
images nonpathological of the same trained network for
different distributions of the training and validation set.

The results presented here seem to indicate a different
attentional behavior of deep neural networks on
pathological and nonpathological images. The lesions
of Crohn’s disease, whose identification is necessary
for image classification, homogenize the attentional
behaviors of the different networks.

Although the influence of the label is visible on the
stability of the attentional behaviors of the deep neural
networks, we observe that for the same network, the
attentional behaviors rendered by the different methods
are different. Although the weights of the network are
perfectly similar, the different methods do not give us
the same attentional areas for the same decision.

Method VGG16 VGG19 ResNet34

GradCAM 0.25 (0.34) 0.35 (0.39) 0.42 (0.54)
Guided GradCAM 0.37 (0.39) 0.44 (0.37) 0.46 (0.42)
Guided back-propagation 0.42 (0.39) 0.50 (0.34) 0.56 (0.28)
Gradients 0.60 (0.35) 0.59 (0.35) 0.69 (0.27)

Table F2. Summary table of the scores obtained with Pearson’s
correlation coefficient (CC) between the attention maps of the
images pathological of the same trained network for different
distributions of the training and validation set.
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Appendix G: Comparison between
human and machine attention
across the image classification
confusion matrix

Figure G1. Comparison of different post hoc artificial attention extraction methods with human novice and expert attention as a
function of image labels. The abbreviations TP, TN, FN, and FP respectively correspond to true positives, true negatives, false
negatives, and false positives. These results show us that only the gradient method can account for the fact that when the algorithm
makes a prediction error, its attentional behavior is close to that of humans who correctly classified the image. This indicates that the
errors of the networks could mostly be recognition or diagnostic errors and not detection errors.
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