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A key question in perception research is how stimulus
variations translate into perceptual magnitudes, that is,
the perceptual encoding process. As experimenters, we
cannot probe perceptual magnitudes directly, but infer
the encoding process from responses obtained in a
psychophysical experiment. The most prominent
experimental technique to measure perceptual
appearance is matching, where observers adjust a probe
stimulus to match a target in its appearance along the
dimension of interest. The resulting data quantify the
perceived magnitude of the target in physical units of
the probe, and are thus an indirect expression of the
underlying encoding process. In this paper, we show
analytically and in simulation that data from matching
tasks do not sufficiently constrain perceptual encoding
functions, because there exist an infinite number of
pairs of encoding functions that generate the same
matching data. We use simulation to demonstrate that
maximum likelihood conjoint measurement (Ho, Landy,
& Maloney, 2008; Knoblauch & Maloney, 2012) does an
excellent job of recovering the shape of ground truth
encoding functions from data that were generated with
these very functions. Finally, we measure perceptual
scales and matching data for White’s effect (White,
1979) and show that the matching data can be predicted
from the estimated encoding functions, down to
individual differences.

Introduction

As psychophysicists we study human visual
perception using a black box approach (Georgeson,
1979). We systematically vary the input to the visual
system along some stimulus dimension of interest
(S), and measure the corresponding output, that is,
the behavioral response (R). If the chosen stimulus
dimension is relevant to visual perception, there

should be a lawful relationship between input and
output, namely, between stimulus and response. These
stimulus-response functions characterize the system
in mathematical terms (R = f(S)), and they serve as
empirical target for theoretical and computational
models of perception. This is the psychophysicist’s
approach to “peer into” the black box.

The actual target of perception research, however,
are perceptual processes (�(S) in Figure 1), which
we infer from observable behavior (verbal reports or
button presses). The psychophysical characterization
of perception in terms of observable responses (R
= f(S)) involves two putative processes (Figure 1;
adapted from Gescheider, 1997, Figure 12.7). The
perceptual process captures the translation of stimulus
variations into perceptual magnitudes (� = f1(S)). It
has been called transducer function in the study of
near-threshold vision (e.g., Kingdom& Prins, 2016) and
stimulus transformation function or psychophysical
law in the study of supra-threshold vision (Gescheider,
1997; Gescheider, 1988). We refer to it as perceptual
encoding. The second process involves the translation
of a perceptual magnitude into a behavioral response
(R = f2(�)). It has been called response transformation
function, sensory-response law (Gescheider, 1988;
Gescheider, 1997), or readout. We refer to it as
perceptual decoding. The overall stimulus-response
function is thus a composition of perceptual encoding
and decoding (R = f2◦f1 see Figure 1).

Encoding and decoding in near-threshold vision

In the study of near-threshold perception
(i.e., detection or discrimination), it is relatively
straightforward to model encoding and decoding
processes separately (e.g., Graham, 2011, for review). In
a discrimination experiment, an observer is presented
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Figure 1. Relationship between stimulus and response for perceptual appearance measures. A stimulus varies along a physical
dimension of interest (S), e.g., luminance, and observers have a corresponding perceptual experience (�(S)), e.g., brightness.
Different values of S produce different values of (�(S)). We refer to this mapping between physical and perceptual quantities as
perceptual encoding. In a psychophysical experiment, observers are presented with varying S and express their perceptual
experiences (�(S)) by a certain response R, such as matching the luminance of a probe stimulus so that it looks like the target. This
observable mapping can be characterized by the function R = f3(S). Internally, we assume a second mapping, the perceptual decoding
function which assigns responses to perceptual magnitudes R = f2(�). f1 and f2 are happening in a black box called participant. The
stimulus response function f3 = f2◦f1 is a composition of the encoding and decoding function (inset). To estimate the perceptual
encoding function from the stimulus response function, one needs to make assumptions about the perceptual decoding function and
vice versa (after Gescheider, 1997).

with two stimuli and asked to choose the stimulus
of higher intensity. Signal detection theory (Green &
Swets, 1966) assumes that each of the two stimuli evokes
a response on the sensory axis. The mapping between
stimulus and internal response is noisy and hence varies
slightly from trial to trial (perceptual encoding). The
perceptual decoding process, i.e., the decision, is then
conveniently modelled as the difference between the
perceptual magnitudes in the presence of noise. If the
difference is larger than some criterion the observer
chooses one behavioral response option; if not, they
choose the other. This decoding process transforms
the quantitative difference in perceived magnitude
between the two stimuli into a binary response in an
individual trial. However, using many repetitions for
the same physical stimulus differences one can infer
their perceptual distance from the frequency of correct
discriminations.

Encoding and decoding in supra-threshold
vision

In the study of supra-threshold perception, such
as perceived size, color, or lightness, it has been
more difficult to disentangle encoding and decoding
processes. Appearance judgments involve an absolute

rather than a relative assessment of intensity, and hence
presumably involve anchoring and scaling mechanisms
(e.g., Kingdom, 2011, for review). Such mechanisms
have not been incorporated in computational models of
appearance yet. In the domain of lightness perception,
which we are interested in here, existing computational
models predict only the direction of a lightness
difference (Betz, Shapley, Wichmann, & Maertens,
2015b), or infer the magnitude of perceived differences
from the model output to different stimuli relative to
one another (Robinson, Hammon, & de Sa, 2007).

Empirically, appearance has also been assessed
traditionally with absolute rather than relative
judgments. Stevens’ (1956) magnitude estimation
required observers to assign numbers to variations in
stimulus intensity. This is a difficult task, because it
relies on observers’ numerical literacy. Apart from that,
the derived scales cannot be taken as direct estimates
of the encoding function, because it is unclear how
observers map the perceptual magnitudes to numerical
responses. This would require assumptions about
the (linearity of the) decoding functions (Gescheider
1988; Gescheider, 1997). In some cases, these (implicit)
assumptions may hold true, and scales derived from
magnitude estimation then should agree with scales
derived using methods that make these assumptions
explicit (see, for example, Devinck & Knoblauch, 2023).
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Figure 2. Brightness matching experiment with White’s (1979)
stimulus. This stimulus (a) produces a brightness difference
between equiluminant gray patches embedded in the black
(target) and white phase (probe) of a squarewave grating. To
match the target’s brightness, observers adjust the probe
luminance to be higher than that of the target (dark cross in b).
The difference in physical luminance required for a brightness
match varies systematically with target luminance.
Measurements across the range of target luminances trace out
a transfer function (dark gray markers). By swapping the
positions of target and probe the complementary transfer
function is obtained (light gray markers). (c) Putative encoding
functions describing the luminance to brightness mapping in
White’s effect. The vertical line, which connects circular
markers on both transfer functions, quantifies the perceived
difference between equiluminant target and probe.

The predominant experimental paradigm to assess
perceptual appearance is matching (Fechner’s, 1889,
original method of average errors). Matching is
a straightforward task where observers physically
adjust a probe so as to maximally match some aspect
of a given target. In lightness matching (Figure 2),
observers adjust the luminance of the probe so
that it looks equally light as the target of a given
luminance. Matching tasks probe observers’ percepts,
i.e., lightness, in the physical “currency” of the stimulus,
i.e., luminance. Therefore, they do not have to make
explicit assumptions about the internal representation
of the perceptual magnitude under study. As long
as an experimenter is solely interested in quantifying
one perceptual phenomenon relative to another one,
matching will do the job just fine. If, however, one

is interested in the representation of the perceptual
magnitude under study, namely, the perceptual encoding
function, we argue that matching data are inapt to
estimate these functions.

In this paper, we use the study of lightness
perception1 to elucidate the implicit assumptions
about encoding and decoding processes in matching
tasks. We show analytically and in simulation that
data from matching tasks do not sufficiently constrain
perceptual encoding functions because there exist
an infinite number of pairs of encoding functions
that generate the same matching data. We then use
simulation to demonstrate that maximum likelihood
conjoint measurement (Ho, Landy, & Maloney, 2008;
Knoblauch & Maloney, 2012) does an excellent job
of recovering the shape of ground truth encoding
functions from data that were generated with these very
functions. Finally, we measure perceptual scales and
matching data for White’s effect (White, 1979), and
show that the matching data can be predicted from
the estimated encoding functions, down to individual
differences.

Encoding and decoding in matching

Figure 2a illustrates a lightness matching task
for White’s (1979) stimulus. Target and probe have
equal luminance, yet the target which is presented
“in” the black phase looks lighter than the probe
which is presented “in” the white phase. To match the
lighter appearance of the target, the observer adjusts
the probe to a higher physical luminance than that
of the target (Figure 2b, dark symbols). Perceived
target lightness is quantified by the luminance of the
probe. The deviation of the data from the unity line
(black dots relative to dotted diagonal in Figure 2b)
quantifies the effect that targets in the black phase
appear lighter than targets in the white phase. When
the roles of probe and target are reversed, the probe
is adjusted to a lower physical luminance (Figure 2b,
light symbols). Such mutual matches reflect the effect
of context on both probe and target. Alternatively,
experimenters might perform asymmetric matching
where the probe is embedded in an external field
outside the stimulus. Mutual and asymmetric matches
might yield slightly different effect sizes, yet both
gauge the underlying perceptual representation of
the stimulus by probing and expressing a perceptual
quantity (lightness) in units of a physical quantity
(luminance).

To explain that targets of the same luminance
differ in perceived lightness, it is assumed that the
mapping from luminance to lightness is different
for targets in the black and in the white phase of
White’s (1979) stimulus. In other words, the lightness
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Figure 3. Encoding and decoding in lightness matching. (a)
Hypothetical encoding functions that map luminance (x-axis) to
perceived lightness (y-axis). A target of a given luminance (t) is
presented in the black phase of White’s stimulus. The encoding
function for the black phase context (�B) specifies the lightness
value (�B(t)) assigned to that luminance (blue arrow). To
produce a match, the observer adjusts the probe luminance (p,
red-line) such that the perceived lightness of the target (in
black) and the probe (in white) are identical (�B(t) ≡ �W(p)).
The probe luminance is found by inversely reading out the
encoding function in the white phase (�W). (b) Matching data
(markers) for different luminances obtained from the procedure
described in (a). (c) Alternative encoding functions that produce
the same matching data as in (b).

encoding functions (or lightness transfer functions,
e.g., Adelson, 2000; Maertens & Shapley, 2013;
Zeiner & Maertens, 2014) differ between contexts
(Figure 2c). The perceived lightness difference for two
equiluminant targets is captured by the vertical distance
between the two encoding functions (vertical line in
Figure 2c).

Figure 3a depicts the putative encoding and decoding
processes in a lightness matching task. The observer

is presented with a target of a given luminance (t)
in the black phase of White’s stimulus. Using the
target encoding function (black curve in Figure 3a) a
lightness value (�B(t)) is assigned to the luminance
of the target. To produce a match, the observer
adjusts the probe luminance (p, Figure 3a red line)
such that the perceived lightness of the target (in
black) and the probe (in white) are identical (�B(t) ≡
�W(p)). The probe luminance (p) is found by inversely
reading out the encoding function in the white phase
(�W).

Matching provides the horizontal difference between
target and probe encoding functions in units of
luminance for the same ordinate value (�(t) ≡ �(p),
green line in Figure 3a). It does not provide the
vertical difference between the encoding functions
which captures the perceived lightness difference for
equiliminant targets.

To quantify the horizontal differences between both
functions across the entire stimulus range, one can
collect matches for a variety of target luminances,
t1, t2, .... Unfortunately, as illustrated in Figure 3c,
different pairs of encoding functions can produce
the same set of matching data. In fact, any pair of
encoding functions for which the horizontal distance
at each ordinate position is identical, will produce
identical matching data. For functions from the power
family this holds true for all pairs with the same ratio
of their exponents (see Appendix A for analytical
derivation). Thus matching data do not sufficiently
constrain the putative encoding functions, and hence
do not allow to characterize the perceptual magnitudes
(�B(t) and �W(p)). In realistic experimental settings
this under-determinancy is exacerbated by two factors:
noise in sensory events and a selective sampling of
matches around a point of maximum difference.
We illustrate these two factors in simulation (see
Appendix B).

In what follows, we explore an alternative method
for estimating encoding functions. MLCM (Ho
et al., 2008; Knoblauch & Maloney, 2012) is a
difference scaling procedure that yields perceptual
scales from difference judgments. The method makes
explicit assumptions about noise in perceptual
judgments and about the decoding process (f2).
Therefore, the measured perceptual scales should
be empirical estimates of the underlying encoding
functions. We evaluate this claim in simulation and
experiment.

Encoding and decoding in MLCM

We simulate an MLCM experiment assuming two
encoding functions, one for the target in the white (�W)
and one for the target in the black phase (�B), as in
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Figure 4. Assumed decoding process for MLCM for two example
trials. Two targets s1 and s2 evoke perceptual magnitudes �(s)
thorough their corresponding encoding functions (in black �B
and in white �W). These magnitudes along the internal
dimension (y-axis) are compared via a difference rule (see
formula in text): if the difference is negative, the first stimulus is
chosen; otherwise, the second. Responses are collected in this
way for all possible pairwise comparisons, within-context (a)
and across context (b).

Figure 2c. The functions are defined as power functions
of the form �B(s) = sα and �W(s) = sβ where the
exponents α, β > 0. In White’s (1979) stimulus, targets
in the black phase appear brighter than targets in the
white phase; therefore, α < β. To test the capability
of MLCM to recover the putative encoding functions
we use pairs of ground truth encoding functions with
different exponents (different shapes), but the same
exponent ratio. To cover a wide range of function
shapes, we varied α between 0.25 and 2.0, and β
between 0.5 and 4.0.

In each trial a (simulated) observer is presented with
two targets (Figure 4). Each target is shown in one of
two contexts (c1 and c2) with a particular luminance
(s1 and s2). The contexts can be identical (c1 = c2 both
targets in the black or both in the white phase, as
in Figure 4a) or different (c1 �= c2 one target in the
black and one in the white phase, as in Figure 4b). The
simulated observer derives two perceptual magnitudes
�c1 (s1) and �c2 (s2) which correspond to the luminance
value on the respective encoding function (�B(s1)
for targets presented in the black phase and �W(s1)
otherwise). To decide which target is brighter, a decision
variable δ is computed as the difference between the two

perceptual magnitudes:
δ = �c2 (s2) − �c1 (s1) + ε

The decision variable δ is assumed to be perturbed
by Gaussian noise with zero mean and fixed variance
(ε ∼ N(0, σ 2)). The simulated observer performs a
binary decision. If δ < 0, they choose the first stimulus;
if not, the second. We simulated noise with σ values of
0.03, 0.06, and 0.15. These values correspond with the
minimum, average, and maximum noise observed in a
previous experiment (Aguilar & Maertens, 2020).

The critical assumptions, which allow MLCM to
estimate perceptual scales (encoding functions), are the
following: (1) variations in stimulus intensity from both
contexts are mapped onto a single internal dimension
(lightness), (2) variability on the internal dimension
(noise) is fixed across the scale, (3) the functions that
map luminance to lightness are different between
the two contexts, and (4) some comparisons must be
difficult, so that in some trials δ is small (see Appendix C
for an explanation). Although assumptions one to three
are a priori assumptions, assumption four depends
on the domain under study, that is, the shape of the
encoding function, the amount of noise, and the chosen
stimulus levels. We simulated the experiment with
different parameters of the ground truth functions and
different noise levels, and used ten stimulus levels across
the possible contrast range.

Design

We varied target luminance and target placement.
We tested 10 luminance values spaced linearly between
0.1 and 0.9, and 2 target positions, in the black or in
the white phase of the grating. This results in a set of
20 possible stimuli (10 luminances × 2 placements).
MLCM requires the (simulated) observer to “see” and
compare all possible stimulus pairs, that is, (20 × (20
− 1))/2 = 190. These judgments form the basis for the
scale estimation. Each stimulus was repeated 15 times,
resulting in a total of 2,850 trials per simulation. The
simulated data were fed into the MLCM estimation
routine to estimate (simulated) perceptual scales. We
used the MLCM implementation in (R Core Team,
2021; Knoblauch, Maloney, & Aguilar, 2022). We used
bootstrap procedures to estimate confidence intervals
and evaluate goodness of fit (see Aguilar & Maertens,
2020; Aguilar & Maertens, 2022 for details).

Evaluation

We repeat the simulation procedure 1,000 times to
get estimates of perceptual scale averages and their
95% confidence intervals. To quantify how accurately
MLCM can estimate encoding functions, we calculate
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Figure 5. MLCM scales and ground truth functions. Each panel depicts a pair of ground-truth encoding functions (continuous lines)
and the average perceptual scales obtained from MLCM (dot markers). Error bars depicts the 95% confidence interval calculated
across 1,000 simulation runs. The simulated noise level was 6% (σ = 0.06).

the root-mean squared error (RMSE) between the
obtained perceptual scale �̂(s) and its ground-truth
counterpart (�(s)) with N = 10 luminance values.

RMSE =
√√√√ 1

N

N∑
i=1

[
�B(si) − �̂B(si)

]2

+
√√√√ 1

N

N∑
i=1

[
�W (si) − �̂W (si)

]2

The average error was calculated across simulations.
The range of �(s) is from 0 to 1 and we interpret this
value as average error in percent.

MLCM estimates encoding functions

Figure 5 shows the simulated MLCM results for
four pairs of encoding functions. It is evident that the
estimated perceptual scales (markers in Figure 5) are
close to the ground-truth functions for all function
shapes. Small deviations occur in the function’s
most nonlinear range (Figure 5 left- and rightmost
panels). The RMSE, which quantifies the amount of
deviation from ground truth, ranged from 2.7% to
3.7% (mid-right and rightmost panels in Figure 5,
respectively).

We explored the effect of noise magnitude on
estimation accuracy. We repeated the simulations for
smaller and larger noise values (σ = 0.03 and 0.15).
For larger noise, the perceptual scales were still in close
agreement with the ground truth functions (RMSE
ranges from 3.0% and 3.4%) (Figure A5). For lower
noise, the estimated scales deviated more from the
ground truth functions, in particular in the nonlinear
regime (RMSE ranges from 3.4% and 5.8%) (Figure A5
uppermost panel). When there is little noise, judgments
are almost deterministic (frequency of judging one
stimulus as brighter than the other is 0 or 1). Such

data introduce bias in the statistical model underlying
MLCM, because they carry too little information
about the separation of the stimuli on the internal axis.
This problem is known as “complete separation” in
the logistic regression literature. Our simulation results
indicate that for the chosen functions shapes, realistic
noise levels and the chosen stimulus spacing, MLCM
can recover the shape of the encoding functions.

Experimental method and results

In the following experiment, we use MLCM to
measure perceptual scales for White’s (1979) effect. We
also measure perceptual matches in White’s (1979) effect
for the same participants. We compare the empirical
matches to matches predicted from the perceptual
scales.

Participants

Four expert participants (the three authors and one
affiliate) and four naive participants participated in
the experiment. Naive participants were financially
compensated for their participation (€12/hour). All
participants had normal or corrected-to-normal vision.
One participant (GA) has deuteranomalous color
vision.

Apparatus

Stimuli were presented on a 21-inch Siemens
SMM2106 LS grayscale monitor driven by a Datapixx
device (Vpixx Technologies, Inc., Saint-Bruno, QC,
Canada) and custom presentation software (HRL,
https://github.com/computational-psychology/hrl).
The apparatus allows a luminance depth resolution
of 16-bit, with a spatial resolution of 1,024 × 768
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pixels (400 × 300 mm) and at a 130-Hz refresh rate.
Monitor calibration and luminance measurement
was conducted using a Minolta LS-100 photometer
(Konica Minolta, Tokyo, Japan). Participants viewed
the stimuli from a chinrest positioned approximately
76 cm away, such that 1° visual angle corresponded with
34 pixels. Participants’ answers were recorded with a
ResponsePixx button-box (Vpixx Technologies, Inc.).

Stimuli

Stimuli were versions of White’s (1979) stimulus,
based on Robinson et al. (2007) WE_thin version,
and created using a pre-release version of stimupy
(Schmittwilken, Maertens, & Vincent, 2023). The
stimuli consisted of two gray targets patches embedded
in a high contrast square-wave grating (Figure 2a).
The square-wave grating spanned 16° × 12° (width
× height), with a frequency of 0.5 cycles per degree,
so that the stimuli contained exactly 8 full cycles (16
black and white bars). The minimum luminance,
corresponding to the black phase, was 5.25 cdm−2, and
the maximum luminance, corresponding with white
phase, was 490 cdm−2, producing a Michelson contrast
of 0.98. The grating was centered on a neutral gray
background of 95 cdm−2.

Two target patches were embedded in the grating.
Their placement varied from trial to trial according to
the design (see below). The phase of the grating was
randomized, that is, starting with black or white, and
the targets were randomly placed either on phases 4
and 12, or on phases 5 and 13 of the grating (counting
from left to right). Target patches spanned 4° vertically,
and were vertically centered in the middle of the
grating. We tested 10 different target luminances which
were nominally identical for both target placements,
1.0%, 3.5%, 7%, 13%, 26%, 39%, 52%, 64%, 77%,
90% of maximum monitor luminance. In practice, the
luminances differed slightly for targets placed in the
black or white phase of the grating because of monitor
inhomogeneities. Targets in the black phase were 7.6,
18, 33, 61, 120, 181, 243, 302, 368 and 436 cdm−2, and
targets in the white phase were 11, 22, 38, 66, 126, 188,
250, 311, 377, and 446 cdm−2. These actual luminances
were measured at the target positions with the full
stimulus on the display. Thus, the reported values match
what participants saw during the experiment.

MLCM procedure

The experimental design was the same as in the
simulations. There were 20 possible target types (10
luminance values × 2 placements), resulting in a total
of 190 unique stimulus pairs. Targets were embedded in
the grating and according to the design placed in black

Target luminance

Ta
rg

et
 p

la
ce

m
en

t

in black

in white

Example 
stimuli

... ... ... ... ...

... ... ... ... ...

x1 x10

Figure 6. Stimuli construction. Targets varied along 10 different
luminance values and position, either “in” the black or “in” the
white phase of the grating. Stimuli were constructed by
producing all possible paired combinations of these 20 different
target types, for a total of 190 stimuli.

phases, in white phases, or one in a black and one in a
white phase (see Figure 6 for examples).

For each trial, a stimulus was presented and the
participant indicated which of the two targets appeared
brighter by pressing the left or right button on a
response box. The stimulus was shown until the
participant pressed a button. Trials were organized
in blocks and each block contained all 190 possible
stimuli. Participants completed 15 blocks over the
course of 3 sessions, for a total of 2,850 trials per
participant (the same amount as in the simulations).
The sequence of trials within each block was random.
Each block lasted on average 4 minutes. Participants
were free to take breaks between blocks.

Perceptual scales were estimated using MLCM
following the procedure described for the simulations
(see the section on Encoding and decoding in MLCM).

Mutual matching procedure

Participants also completed a mutual matching task
with the same stimuli as in the MLCM task. For this,
task participants were presented with a target placed
in one phase of the grating and were asked to adjust
the probe placed in the other phase of the grating.
Observers only performed matches where target and
probe were presented in different phases of the grating.
They were instructed to adjust the probe so as to match
the target’s brightness. They could use two buttons for
coarse and two buttons for fine adjustments. A fifth
button was used to indicate that a satisfactory match
had been reached and this triggered the presentation
of the next trial. No time limit was imposed. In a
single block, each target type (10 luminance values × 2
positions) was repeated twice, once on the left target
location and once on the right. Participants completed
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3 blocks (1 per session) of this task, resulting in a total
of 120 trials per participant.

Results

Perceptual scales

Figure 7 shows the perceptual scales for each
participant. By default, MLCM anchors the scale
minimum (0) at one (arbitrary) stimulus level. The
maximum scale value reflects the noise estimated for
that participant. The higher the scale value the smaller
the estimated noise. Noise estimates ranged from 0.03
to 0.07 across participants, with an average of 0.05.
To be able to compare scales between participants, we
assigned the lowest target luminance for targets in the
white phase as the minimum (scale value of 0), and we
divided all scale values per participant by the maximum
value of that participant. This results in a maximum
scale value of 1.

Perceptual scales were monotonically increasing
nonlinear functions of target luminance. Their
shape and amount of nonlinearity varied between
participants, and also depended on the location of the
target. The scale values for targets in the black phase
(black markers in Figure 7) were higher than for targets
in the white phase for almost all data points. This effect
was more pronounced for some participants than for

others and is consistent with the direction of White’s
(1979) effect. Scales from participants JV, MM, and SZ
show a large difference between the two scales, whereas
participant JS showed almost no difference. As we
will show below this inter-observer variability seems
to reflect idiosyncratic aspects of how participants
perceive the stimulus, because these differences were
reproduced in the matching task.

We performed likelihood ratio tests on individual
participants’ data to determine which statistical model
in MLCM fits the data better (either the “independent,”
“additive,” or “saturated” model, which vary in the
degrees of freedom; see Knoblauch & Maloney, 2012
for details). Across participants, the most general,
“saturated,” model accounted best for the data, and
revealed that perceptual scales were not just related
to each other by a vertical shift of fixed amount.
Instead, the target placement affected the mapping of
luminance to lightness in different ways for different
target luminances.

Predicting empirical matches from empirical
scales

If we assume that perceptual scales are valid estimates
of perceptual encoding functions, and that matching
relies on ‘readout’ from these encoding functions
(Figure 3; c.f. Aguilar & Maertens, 2020), then we
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Figure 7. Perceptual scales for White’s (1979) stimulus obtained with MLCM. Each panel shows the scales from one participant for
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Figure 9. Scales can predict matching data (cont.). Same as Figure 8 but for four naive participants.
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should be able to predict the empirical matches from
the empirical perceptual scales.

Figures 8 and 9 show matches derived from
perceptual scales next to matching data measured in a
mutal matching task for each individual participant.
Here the perceptual effect that targets in the black
phases look lighter than targets in the white phases is
expressed by the deviation of the data points from the
identity line. There is substantial variability between
participants; however, empirical and predicted matches
from the same participant are consistent. For example,
naive participant JS shows almost no effect of target
location on target brightness, and their matches
almost line up on the identity line. That pattern is also
predicted from the perceptual scales. SZ on the other
hand shows a pronounced effect of target location
on target brightness and that pattern of matches is
also predicted from their perceptual scales. To better
compare the data we plot the empirical matches against
the predicted matches (right panels in Figures 8 and
9). Here the identity line indicates perfect prediction.
Apart from one participant (GA) there is a close
correspondence between empirical matches and those
predicted from perceptual scales. However, there is one
noteable difference between empirical and predicted
matches: empirical matches were less consistent than the
predictions as indicated by their wider 95 % confidence
intervals (Figures 8 and 9).

Discussion

Main findings

We estimated perceptual scales of brightness as
a function of target luminance for both targets in
White’s (1979) stimulus using MLCM (Ho et al., 2008;
Knoblauch & Maloney, 2012). For all participants,
these scales were nonlinear, and the scale for the target
in black was always above the scale for the target in
white. This is in line with White’s (1979) effect that
targets in black are perceived lighter than equiluminant
targets in white.

Shapes of brightness scales

The perceptual scales had well-defined shapes,
although there was individual variation. The scale for
the target in black was a compressive nonlinearity.
For most participants the scale for the target in white
had a more pronounced S-shape: approximately linear
at intermediate values and accelerating towards the
ends of the luminance range. Consequently, the scales
approach each other at the low and high ends of the
range, and bulge away from each other for intermediate
luminance values. This shape difference suggests that
two isoluminant targets are perceived maximally

different at intermediate luminance values, and the
magnitude of White’s (1979) effect decreases towards
the extremes of the luminance range. Appearance
matches are often gathered for intermediate target
luminance values, and not across the whole range of
luminances spanned by the surround context. This
makes it harder to compare the shapes of the scales
reported here to previously reported measurements
of White’s (1979) effect. Vincent (2017) reported
similar variation in effect magnitude as a function
of target luminance in a matching paradigm. Rather
than varying the target luminance Lin, Chen, and
Chien (2010) varied the contrast of the grating while
keeping target luminance constant. They found
match contrast decreasing with increasing surround
contrast, which could be in line with the same overall
shapes of brightness scales described here: lower
contrast surrounds would compress the domain
of encoding functions, reducing the intermediate
range of luminance values where effect magnitude is
maximal. The maximal effect magnitude at intermediate
values may make a matching task and thus data
collection easier, which in turn could be a practical
reason why previous measurements have focused
here.

The shapes of the scales also bear resemblance to
those measured byWhittle (1992). In that seminal work,
participants adjusted the luminances of a series of a
fixed number of stimuli such that they corresponded
to equal brightness steps from black to white. For
increment stimuli, brightness was a compressive
function of luminance. For decrement stimuli, a similar
S-shape was reported: steepening of the relationship
near both the pedestal luminance as well as the
background luminance. Whittle (1992) reported this as
the “crispening” effect: an enhancement of brightness
differences near background and pedestal luminances,
which also appears in brightness discrimination
(Whittle, 1986).

The current scales can be said to show crispening
as well, if the targets are considered to contrast with
(only) the collinear bar that they are “in.” The targets
in black are increments and their brightness scale is
a compressive function of luminance. The targets
in white are decrements and their brightness scale
similarly crispens near the white collinear bar as well
as near the black minimum luminance. This dominant
role for the collinear, but not the flanking, contrast
in White’s (1979) effect has previously been implied
(e.g., Betz et al., 2015a; Betz et al., 2015b; Blakeslee,
Padmanabhan, & McCourt, 2016).

Perceptual scales as estimates for encoding
functions

We argue that perceptual scales, such as the lightness
scales we derived with MLCM, can be considered
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estimates of perceptual encoding functions. These
encoding functions (or estimates thereof) can be
thought to underlie both the pairwise comparison data
collected in the MLCM experiment, as well as the
appearance matches in the matching task. Both our
simulations and our empirical data show that brightness
encoding functions estimated using MLCM can predict
brightness matches from the same participants to
within the variability of the matches. These predictions
are reliable for each participant and capture the
idiosyncratic variations observed in the matches. This
good congruence between matches and scales is strong
evidence that both tasks tap into the same perceptual
encoding mechanisms.

We showed analytically and through simulation
that the MLCM-based encoding functions can predict
matches, but matches cannot be used to (uniquely)
constrain the underlying encoding functions. Depending
on noise and measurement range, a wide variety of
encoding functions can be consistent with the same set
of matches. This is because matching does not separate
encoding and decoding processes. Scaling methods
such as MLCM separate decoding and encoding,
and explicitly define a perceptual decoding strategy.
We have used the method in a novel way, because we
asked participants to perform pairwise comparisons
across a dimension that was categorical (black vs. white
context), not metric (e.g., Ho et al., 2008). We have
shown in simulation and experiment that perceptual
scales can be reliably estimated when there is a sufficient
number of non-trivial trials in the set of all comparisons
(see Appendix C for explanation). If all comparisons
were easy, they would result in a proportion of correct
responses of 1. These comparisons are not informative
about the size of perceptual intervals. As shown in
Figure A4, intermediate performance values are ideal
to establish the shape of the perceptual scales. Without
the informative trials, estimation would default to
linear scales, because the size of different perceptual
intervals would not be distinguishable, and hence
be estimated to be identical. Whether or not it is
possible to estimate perceptual scales for categorical
dimensions in other domains of appearance is an
empirical question. We recommend to use simulation to
trace out the space of function shapes, noise levels and
stimulus spacing before collecting data for a particular
stimulus.

Equality vs. difference judgments

Pairwise comparisons are easier than brightness
matching. A large number of trials in our MLCM
experiment consisted of physical differences between
stimuli that were easy to judge (all within context
comparions). Only some comparisons between contexts
were difficult because they required participants to

decide between small differences in brightness. In
contrast, the matching task required participants to
find a point of perceptual equivalence in every single
trial. Instead of judging the direction of a perceptual
difference (paired comparison), they minimize a
perceptual difference (matching), which is considerably
more demanding. Additionally, there might be
conditions under which participants may set a match,
but contend that the target and probe do not appear
identical. The situation may arise when variations along
a single physical stimulus dimension lead to changes on
more than one perceptual dimension (Logvinenko &
Maloney, 2006). For example, for brightness it has been
reported that under low luminance (or contrast), the
target appears to be seen trough a transparent medium
(Ekroll, Faul, & Niederée, 2004). Although those effects
occur in both matching and scaling tasks, we think the
problem affects matches more than paired comparisons,
because it is already an inherently more difficult
task.

The difference in inherent task difficulty might
explain why the confidence intervals associated with
matches predicted from scales are smaller than those for
the empirical matches (Figures 8 and 9). Participants’
match luminances (six repeats for a given target
luminance) often span a range of brightness values that
is way larger than the brightness differences they could
discriminate. They consider all these values appropriate
matches for the same target brightness. In matching
data, this appears as noise or variability, but it may
reflect aspects of participants’ perception such as the
aformentioned imperfect matching.

Perceptual scales from pairwise comparisons appear
less noisy. In part, this is because the stochasticity in a
participant’s responses is used to estimate the scales. It
is also by experimental design. The stimulus values for
MLCM are chosen such that within one context they
can be well-discriminated and put in order. This means
participants are presented with fewer trials that fall
within a given equivalence class. If those equivalence
classes reflect some aspect of perception not captured in
the brightness difference task, that may not be captured
in the brightness scales. Thus, although scaling data are
less noisy, they may also miss aspects of perception.

Additionally, the pairwise comparisons in MLCM
are faster than the brightness matches. Participants only
need seconds to make the single decision on every trial.
In contrast, a matching trial can take up to 1 minute,
with participants adjusting and readjusting their match.
Five blocks of 190 paired comparison trials in the
current experiment took about as long as a single block
of 40 matching trials. Moreover, there may be room for
additional speedup in MLCM tasks. As mentioned,
many of the pairwise comparisons are easy trials, which
tend to result in deterministic responses (disregarding
lapses), and thus carry little information for the scale
estimation. Selecting more informative trials could
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improve the estimation procedure and decrease the total
number of trials.

Anchoring the scales

A potential advantage of matching over scaling,
is that participants can explicitly compare to some
well-defined standard, such as Munsell papers.
This would allow for a more directly interpretatble
estimation of the perceptual encoding function, but
relies on an (implicitly) assumed shape of the encoding
function for the matching stimulus. The external
stimulus itself is encoded through some function.
There is no fundamental difference between asymmetric
and the mutual matching used in the current study.
Matching to a well-defined standard instead relies on a
known or assumed perceptual encoding function for the
matching stimulus. For example, in Munsell matching,
the function has perceptually equal spacing by design
(Newhall, 1940). In contrast, scaling methods do not
require any assumed shape for either encoding function
and instead estimate both shapes simultaneously.
Pairwise comparisons can also be used to compare a
stimulus to a standard, with comparisons for every
combination of stimulus level and standard level
(across-context), as well as every combination of
stimulus levels (within-context), and standard levels
(within-context). Scales could then be estimated in
the same way as in the current study: one for the
stimulus, and one for the standard. The latter can
be scaled to the predefined, interpretable units. The
comparions between standard levels could even be left
out experimentally, instead assumed to be, e.g., perfect
noiseless discrimination between standard levels. That
is the exact same assumption as Munsell matching,
but more explicitly, in our view. We hypothesize that
the matches to the standard could be predicted from
scales estimated in this way. Thus, scaling methods
are more flexible in estimating perceptual encoding
functions, and can still be constrained in the same way
as matching, but more explicitly so.

Encoding functions and mechanisms

Perceptual encoding functions describe the
relationship between physical stimulus intensities and
perceptual mangnitudes. They do not explain this
relationship mechanistically, nor do we argue that they
represent any one mechanism. A transfer function just
describes the relationship between inputs and outputs
of a system and aggregates all the mechanisms involved
in the system. Thus, a perceptual encoding function
may represent different perceptual mechanisms at play.
These could have differential effect on different parts of
the function. The linear part of the encoding functions

might be primarily driven by a mechanism that treats
the target as separate object. The crispening at the
extremes of the range may be driven by a mechanism
that invokes transparency. Our free-floating speculation
shows that caution is advised in (over)interpreting a
given perceptual encoding function.

We nevertheless argue that encoding functions
are a useful step towards developing mechanistic
theories of perception. Firstly, because they provide
more structured information about perceptual effects
than appearance matches, especially when comparing
different effects; if we were to compare, for example,
several brightness and lightness effects: White’s (1979)
effect, simultaneous brightness contrast, and brightness
assimilation effects. Using a matching paradigm, we
can measure and compare the magnitudes of these
effects for some luminance value. However, when
comparing different effects, it may be difficult to
decide which stimulus parameters for the surround
contexts provide an equivalent comparison. Should
the total image contrast be identical, or the length
of contrast borders with the target, or the total area
of high vs. low luminance context regions, and so
on. Differences in effect magnitude measured with
matching may result from any of these “trivial”
stimulus parameters. While perceptual encoding
functions do not solve this problem, they provide more
robustness, since we are not comparing single effect
magnitudes, but rather a whole relationship between
stimulus values and perceptual magnitudes. We may
test whether the shape of the functions fundamentally
differs between effects, or whether differences are
limited to the range, local slope etc. Hence, comparing
encoding functions provides more information about
the potential relationship between different perceptual
effects.

One intriguing challenge, especially in comparing
perceptual encoding functions is determining the
relevant stimulus parameter(s), especially when these are
correlated. For example, here we estimated brightness
as a function of target luminance, but varying target
luminance also varies the contrast between the target
and the collinear bar, and between the target and the
flanking bar. Which of these is the relevant parameter,
and is that also the relevant parameter in another
brightness effect? Which values along this stimulus
dimension should we pick to properly sample the
perceptual dimension? To estimate the shapes of the
perceptual encoding functions, it is important to have
good coverage over the whole domain and especially
near inflection points of the functions. Because we
do not know the shape of these functions beforehand
(and they vary between observers), we also do not
know which stimulus values will be most informative.
The target luminance values for the experiment
described here were chosen through pilot testing to
better capture the steep slope at low luminances.
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When measuring and comparing encoding functions
for a variety of stimuli, such pilot testing may be
necessary to choose relevant stimulus dimensions and
a value spacing that provides good coverage for all of
them.

Conclusions

Here we show that data derived with matching
paradigms do not uniquely constrain perceptual
encoding functions. We used MLCM to derive
perceptual scales that are estimates of encoding
functions for luminance targets in the White’s (1979)
stimulus. Scales had clearly defined nonlinear shapes
and noteworthy inter-observer variability. We used the
scales to predict matches including the interindividual
differences. This provides evidence that scales reflect the
internal dimension of lightness that is probed by both
matching and scaling. We conclude that perceptual
scaling data allow us to “peer into” the black box
of visual perception, and provide a better target for
computational models of perception.

Keywords: brightness, lightness, scaling, MLCM,
matching, encoding functions, transfer functions, White’s
illusion
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Footnote
1We speak of lightness/brightness perception interchangeably throughout
the manuscript although we agree that in White’s stimulus, presented on
a monitor, one does not perceive lightness as surface reflectance. In our
opinion the distinction is not relevant for the argument we are going to
make.
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Appendix A: Analytical derivation
of one equivalence class

First, we assume the existence of two distinct
encoding functions, one for the target “in” black �B :=
s → �B(s) and one for the target “in” white �W := s →
�W(s).

Further, we assume that these two functions map to
a single perceptual dimension, (in this case lightness
Logvinenko & Maloney, 2006, have shown that this
might not be the case). Formally, we assume then that
the range of both functions is the same set. In our
simulations we have defined it as [0, 1].

Let the target be “in” white and the probe “in” black.
During a matching procedure the observer matches
internally:

�B(p) = �W (t).
What we want is to get a formula for the matching

transfer function, that is, the (observable) probe
luminance (p) as a function of manipulated target
luminance (t). To do that, we further assume that �B
is invertible (i.e., one-to-one and onto) and apply it to
both sides of the equation

�−1
B [�B(p)] = �−1

B [�W (t)]
p = �−1

B [�W (t)]
p = (�−1

B ◦ �W )(t)
As a result, we obtain a (matching) transfer function

relating t and p as the composition of �−1
B with �W.

Analogously, when the target is “in”black and the probe
“in” white, we obtain the complementary function
p = (�−1

W ◦ �B)(t).
For the case when encoding functions are power

functions, let �W := x → xα and �B := x → xβ , with
α, β > 0. Let the target be “in” white and the probe
“in” black. The inverse of the probe encoding function
is �−1

B := ψ → ψ
1
β . Applying the same logic as above,

we have that the probe relates to the target such that:

p = (�−1
B ◦ �W )(t)

= [tα]
1
β

= t
α
β

This gives us an analytical formula for a matching
transfer function, namely, how the probe luminance
depends on the target luminance for the given two
encoding power functions. It follows that as long as
the ratio between the exponents (α/β) is the same, the
resulting observable transfer functions will be identical.
Analogously, the same holds for the swapped case of
the probe “in” white and the target “in” black, for
which the ratio is β/α.

Appendix B: Simulating matching

We simulate matching data for different pairs of
encoding functions, one for the target in the white
(�W) and one for the target in the black phase (�B).
Encoding functions are defined as power functions
of the form �B(s) = sα and �W(s) = sβ where the
exponents α, β > 0. In White’s (1979) stimulus targets
in the black phase appear brighter than targets in the
white phase, therefore α < β (e.g., Figure A1a).

We use power functions, because 1) they capture
the compressive nonlinearities observed in brightness
perception, 2) they range between 0 and 1 for
(normalized) inputs between 0 and 1, and 3) their
inverse is simple to calculate. The logic outlined here
applies to other pairs of (nonlinear) functions as long
as their horizontal differences are the same. We further
model the perceptual representation (�) underlying the

Figure A1. Simulation of matching data in the presence of noise.
(a) Non-linear encoding functions used as ground-truth for
simulations. Additive Gaussian noise (bell curve icons on the
y-axis) is assumed to perturb the lightness representation
(�(s)). (b) Matching data generated from the encoding
functions in a (see text). Markers and error bars depict the
mean and the 95% confidence interval across 1000 simulations,
respectively. (c) Alternative pair of encoding functions with
different exponent ratio. (d) Mean matching data (crosses)
generated from the new encoding functions in c, superimposed
on 95% confidence intervals (bars) and means (dots) generated
from the encoding functions in a.
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Figure A2. Comparison between simulated matching dataset obtained from original encoding functions �B := s0.5 and �B := s1.0, and
matching data from alternative functions of varying shapes. The alternative encoding functions for targets in the black and the white
phase varied in their exponent ratio (α′/β ′, panels) and α′ (x-axis) The exponent β ′ resulted from the other two variables. The vertical
line indicates the original exponent ratio of α/β = 0.5. The y-axis depicts the percentage of simulations for which matching data fell
inside the 95% confidence interval (as in Figure A1D). The cases above 95 % (horizontal line) were considered as experimentally
indistinguishable.

brightness match as perturbed by noise (bell curve icons
in Figure A1a). For a given target luminance t, the
perceptual variable (ψ t) is thus calculated as a sample
from a Gaussian random distribution:

ψt ∼ N (�T (t), σ 2),
where �T is the encoding function for the target (�B
or �W, for targets in the black or the white phase,
respectively) and the parameter σ = 0.05 denotes the
amount of simulated noise.

To readout the probe luminance for the brightness
match, the probe encoding function �P is inverted
to assign a probe luminance (p) to perceived target
brightness (ψ t):

p = �−1
P (ψt ).

For simplicity, we do not add noise to the probe
readout, and we also do not assume any response bias.

We simulate matches for 10 target luminances
linearly spaced between 0 and 1, and sample 5 matches
per target. The roles of target and probe are swapped
to obtain matching data for targets in the black and
in the white phase. This results in a total of 100
trials per simulation (2 targets × 10 luminances ×
5 samples). A simulation is repeated 1,000 times for

each pair of encoding functions to get an estimate of
the mean and the 95% confidence interval (percentile
method). We provide Jupyter notebooks (available
at https://github.com/computational-psychology/
encoding_functions_and_white_stimulus), which run
the following simulations and visualize the data for
various pairs of encoding functions.

Matching data in the presence of noise

We illustrate the procedure for encoding functions
with exponents α = 0.5 and β = 1.0, in the black
and white phase, respectively. Figure A1a shows the
ground-truth encoding functions and Figure A1b the
matching data generated from these functions in the
presence of noise.

We know from the analytical derivation (Appendix A)
that any other pair of power functions with the same
exponent ratio (in this case α/β = 0.5) will produce
the same pattern of matching data. In the presence of
noise the number of interchangeable pairs of encoding
function will be even bigger.

To numerically estimate the effect of noise on
the under-determinacy of the underlying encoding
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function, we simulate pairs of encoding functions with
exponent ratios different from 0.5. We hypothesize
that encoding functions with a ratio somewhat smaller
or larger than 0.5 will generate matches that are
indistinguishable from matches generated from the
original functions.

Figure A1c shows an example pair of alternative
encoding functions (α/β = 0.50/1.11 = 0.45), and
a corresponding simulation of generated matching
data (Figure A1d, crosses). The mean matches of
the simulated data set (crosses) fall within the 95%
confidence interval of the original matches. We take
this as evidence that data generated from functions
with exponent ratios 0.5 and 0.45 are empirically
indistinguishable.

We repeat this simulation logic for exponent ratios
ranging from 0.4 to 0.6 (in linear steps of 0.025), with
α ranging from 0.1 to 1.2 (in linear steps of 0.0125).
The exponent β resulted from these two variables. We
found that encoding functions with a wider exponent
ratio produced matching data consistent with data from
the original encoding functions. Figure A2 shows the
percentage of simulations in which matching datapoints
fell in the range determined by the original data across
1000 simulations. As above, the cases over 95% are
considered ‘in agreement’ with the original data. The
following cases were in agreement: for ratio α/β = 0.45:
α in the range [0.35, 0.59] and β in [0.78, 1.31]; for ratio
α/β = 0.475: α in the range [0.3, 0.61] and β in [0.63,
1.29]; for ratio α/β = 0.50: α in [0.3, 0.61] and β in [0.6,
1.2]; for ratio α/β = 0.525: α in [0.31, 0.63] and β in
[0.6, 1.2]; and for ratio α/β = 0.55: α in [0.4, 0.56] and β
in [0.73, 1.1].

Matching data from a restricted range of
samples

In actual experiments, matches are often restricted to
intermediate values of the stimulus dimension, where
the perceptual effect is expected to be strongest. Here we
simulate this case. Figure A3a shows the same nonlinear
encoding functions as Figure A1a, but now matches
are generated only for target luminances in the range
between 0.4 and 0.6 (Figure A3b). The simplest type
of encoding function that would account for matching
data in this restricted range would be a linear one. We
repeat the same procedure as for the exploration of
exponent ratios and now simulate matching data for
a family of linear encoding functions varying slope
and intercept (slopes in range 0.8 and 1.0, intercept
in range −0.2 and 0.2). Across the tested range linear
encoding functions produce matching data, which are
indistinguishable from data generated with the original
encoding functions (see Figure A3c for an example).

In summary, we find that in realistic experimental
scenarios the set of possible encoding functions

Figure A3. Simulation of matching data with restricted
luminance range. Panels are organized as in Figure A1. (b)
Matching data are generated from original noisy encoding
functions (a) for luminances from 0.4 to 0.6. Matching data
(crosses in d) generated from linear encoding functions (c) are
compatible with the original data (error bars in d reproduced
from b).

compatible with a given matching dataset is wide.
Thus, matching data alone do not allow to infer the
underlying encoding functions.

Appendix C: MLCM assumptions
and scale estimations

In this appendix, we explain in detail the assumptions
behind MLCM, and how they allow the method to
estimate perceptual scales from paired comparisons.
To better understand the logic, we briefly review the
general assumptions of both maximum likelihood
difference scaling (MLDS) and MLCM, because the
methods are closely related to each other.

MLDS and MLCM are methods to estimate
perceptual scales based on binary responses to
suprathreshold stimulus differences (Knoblauch &
Maloney, 2012). MLDS is designed to estimate a single
perceptual scale. It assumes that variations on a single
stimulus dimension s map to variations on a single
perceptual dimension �(s). MLCM is designed to
estimate more than one perceptual scale. It assumes that
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Stimulus

a) b)
MLDS MLCM

StimulusStimulus

Figure A4. Interval comparisons in MLDS and MLCM. In MLDS an observer compares perceptual intervals of triads (as depicted in a) or
quadruples (not shown). In MLCM observers perform paired comparisons (b). To establish a metric scale or scales, all paired
comparisons are taken together in the same model across trials. The interval comparison is thus not done within a single trial but by
subsuming performance for different interval comparisons across trials. In panel b, one interval within the same context (left side,
black markers, �B(s5) − �B(s4)) is equivalent to another interval across contexts (right side, black and gray markers, �W(s7) −
�B(s4)), because their response frequencies are the same (p ∼ 0.75).

stimulus appearance along one perceptual dimension is
determined by several physical dimensions. In our case
we assume that perceived target lightness is affected
by the luminance and the context of a target. MLCM
estimates perceptual scales which map variations in
luminance to variations in perceived lightness, and
these scales differ between contexts. To take the internal
stochasticity of human judgments into account MLDS
and MLCM include a noise parameter in the model.
Noise is assumed to be constant across the perceptual
dimension and is estimated along with the scale(s).

The noise can be thought to occur at the decision
stage, that is, after perceptual magnitudes are compared.
This idea is reflected in the decision model of MLDS
andMLCM, which is formulated as δ = (�(s3) − �(s2))
− (�(s2) − �(s1)) + ε for an MLDS trial where three
stimuli need to be compared. Alternatively, the mapping
to the internal dimension itself can be noisy, and hence
the same stimulus magnitude would be associated with
a distribution of perceptual magnitudes as illustrated
by the Gaussian curves on the y-axis in Figure A4.
Because noise is assumed to be Gaussian and of equal
variance along the internal dimension, both scenarios
are equivalent.

MLDS requires observers to compare interval
differences, i.e., which of two pairs of stimuli include
the bigger difference (triads or quadruples). Figure A4a
shows an example for a triad comparison, where the
observer judges whether the interval �(s9) − �(s4) or
�(s4) − �(s2) is perceived as bigger. Judgments are
repeated several times to obtain a relative frequency
of choosing one interval or the other. This frequency
indicates the perceived magnitude of the intervals.
A frequency of 0.5 indicates that both intervals are
perceived to be approximately equal. A frequency close

to 1 would indicate that the second interval is perceived
as larger than the first. In the example in Figure A4a,
the relative frequency is approximately 0.65, so the
second interval is judged to be slightly greater than
the first. By repeatedly presenting different triads and
putting them all in the same statistical model, MLDS
estimates the parameters for �(s) that best explain the
data (maximize the likelihood of the data).

A key aspect of MLDS is that observers judge
perceptual intervals. These judgments contain easy
and difficult comparisons, and hence produce relative
frequencies across the entire range from ceiling (p = 0
or p = 1) to guessing (p = 0.5).

Pairwise comparisons of supra-threshold stimuli
are easier than interval comparisons, and hence are
more likely to result in ceiling frequencies. This would
pose a problem for scale estimation because with
frequencies close to one or zero are not informative
about perceptual magnitudes and thus insufficient to
constrain interval scales (Gescheider, 1997).

HowMLCM estimates perceptual scales from
paired comparisons

To illustrate how MLCM estimates scales we use
three selected pairwise comparisons (Figure A4b).
The left panel shows two paired comparisons each
within the same context and hence on the same
perceptual scale. The first comparison is between s4
and s5 (black context). The stimuli elicit perceptual
responses �B(s5) and �B(s4). The comparison is
repeated several times and produces a relative frequency
of judging s5 lighter than s4 of p = 0.75. The second
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Figure A5. Results of simulated MLCM experiment for varying function shapes (columns) and amounts of noise (rows, σ ). Same
format as Figure 5 in main text.

comparison is between s2 and s3 (white context). s3
is perceived lighter than s2 with a relative frequency
of p = 0.9. These two examples illustrate how the
response frequencies determine the shape of each
scale: the local slope of �B needs to be shallower than
that of �W to produce a smaller perceptual interval
between two stimuli (less discriminable). MLCM also
includes comparisons across contexts. An example is
shown in the right panel of Figure A4b. When s4 is
shown in black and s7 in white, observers judge s7 as
lighter with a relative frequency of p = 0.75. Because
this frequency is the same as for the “within pair”

(s4 and s5) in the black context, the perceptual interval
should be of the same size. Considering all within-
and across-context comparisons in the same statistical
model, MLCM estimates scale values for which these
interval relationships are preserved.

MLDS and MLCM can estimate scales only for
relative frequencies that are not all zero or one. This
was corroborated by our simulations with very low
(unrealistic) noise levels. When either noise is too low
or stimulus levels are too far apart from each other,
the comparisons are not informative and the resulting
MLCM scales show biases.
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