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Purpose: Real-world evaluation of a deep learningmodel that prioritizes patients based
on risk of progression to moderate or worse (MOD+) diabetic retinopathy (DR).

Methods: This nonrandomized, single-arm, prospective, interventional study included
patients attending DR screening at four centers across Thailand from September 2019
to January 2020, with mild or no DR. Fundus photographs were input into the model,
and patients were scheduled for their subsequent screening from September 2020 to
January 2021 in order of predicted risk. Evaluation focused onmodel sensitivity, defined
as correctly ranking patients that developed MOD+ within the first 50% of subsequent
screens.

Results: We analyzed 1,757 patients, of which 52 (3.0%) developed MOD+. Using the
model-proposed order, the model’s sensitivity was 90.4%. Both the model-proposed
order and mild/no DR plus HbA1c had significantly higher sensitivity than the random
order (P < 0.001). Excluding one major (rural) site that had practical implementation
challenges, the remaining sites included 567 patients and 15 (2.6%) developed MOD+.
Here, themodel-proposed order achieved 86.7% versus 73.3% for the ranking that used
DR grade and hemoglobin A1c.

Conclusions: The model can help prioritize follow-up visits for the largest subgroups
of DR patients (those with no or mild DR). Further research is needed to evaluate the
impact on clinical management and outcomes.

Translational Relevance: Deep learning demonstrated potential for risk stratification
in DR screening. However, real-world practicalities must be resolved to fully realize the
benefit.

Introduction

Diabetic retinopathy (DR), a complication of
diabetes, is a major cause of visual loss globally.1
The diabetic patient population is expected to grow
from 415 million in 2015 to 642 million in 2040, with
an expected concomitant increase in DR incidence.2
Regular screening is key to preventing irreversible
blindness caused by DR,3 and several countries world-
wide have implemented screening programs that use

color fundus photography (CFP) to identify those at
risk of developing sight-threatening DR.4

However, DR screening faces a scaling challenge as
the number of patients with diabetes rises.

Of those with diabetes, 75% are in low-to-middle
income countries, and the burden of diabetes and
its related conditions disproportionately affects
these populations.5 Relatedly, low-to-middle income
countries are more likely to suffer from constraints in
resources and trained health care professionals.6 The
coronavirus disease 2019 (COVID-19) pandemic added
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further strain to health care systems, and nonurgent
medical appointments for DR screenings were deferred
for several months. With the resumption of screenings,
hospitals and clinics experienced backlogs and were
overburdened with the consequences of delayed care
and screening.7–10

These challenges may be addressed by optimiz-
ing screening intervals personalized to a patient’s risk
of DR progression, potentially improving program
efficiency and vision-related outcomeswhile also reduc-
ing cost. In recent times, deep learning (DL) systems
have been applied to automated computational grading
of fundus photos for DR assessment, and many have
shown expert-level accuracy.11–14 However, few studies
have investigated the application of DL for DR risk
stratification to help optimize DR screening intervals
or identify those at most urgent need of screening. A
previous study developed and retrospectively validated
a DL model that uses CFPs to predict the risk of
developing mild or worse DR in patients with diabetes
without DR.15 This DL system provides a score that
indicates the predicted likelihood of developing DR
within the next two years. The model’s area under the
curve for predicting development of DR across two
validation sets were 0.79 and 0.70 (95% confidence
intervals, 0.77–0.81 and 0.67–0.74, respectively).

In the present study, we conducted a prospective
evaluation of the clinical usefulness of the aforemen-
tioned DR progression model to prioritize patients
according to their risk of progression based on prior
CFPs. This studywas conducted inThailand during the
COVID-19 pandemic, which significantly impacted the
country’s national DR screening program—a program
that serves an estimated 4.5 million patients with
diabetes.16 The DR progression model was extended
to predict the likelihood of progression from no or
mild DR to referable disease defined as moderate
or worse (MOD+) DR (Early Treatment Diabetic
Retinopathy Study level≥43) within 1 year.We hypoth-
esized that the model would aid in prioritizing patients
for prompt screening and deferring appointments for
nonurgent cases in case of capacity constraints. In
this nonrandomized, single-arm, prospective, interven-
tional study, we demonstrate the real-world feasibil-
ity and the considerations behind implementing a DL
system in prioritizing screening cases according to their
likelihood of progression to MOD+ DR.

Methods

Inclusion and Exclusion Criteria

The Thailand Prospective Study (TPS) (Thai Clini-
cal Trials Registry #TCTR20190902002) explored the

use of Google’s automated DR screening software in
a real-world clinical setting.14 The present nonran-
domized, single-arm prospective interventional study,
involves 3507 participants, which are a subset of partic-
ipants in the TPS. Our studywas approved by theOffice
of Research Ethics Committee of Rajavithi Hospital
on behalf of all participating sites. Patients gave written
informed consent allowing their retinal images to be
used in the study.

Five hospitals across Thailand were involved in our
study—namely, Phrao, Chomthong, Rajavithi, Khlong
Luang, and San Patong Hospitals. Patients underwent
a baseline visit as a part of the TPS. The inclusion
criteria for TPS were all patients with diabetes in the
national diabetes registry above age 18. Exclusion crite-
ria for TPS were patients with a previous diagnosis
of DME, severe NPDR, or proliferative DR; prior
laser treatment of the retina or retinal surgery; other
non-DR eye disease requiring referral to an ophthal-
mologist; or inability to have fundus photo taken of
either eye for any reason. A subset of TPS patients who
underwent DR screening between September 2019 and
January 2020 and were graded as mild or no DR and
not having diabetic macular edema in both eyes were
analyzed for our study. A description of the grading
approach is described in subsequent paragraphs.

DL Progression Model

Details of the model have been published previ-
ously.15 Briefly, the model was based on the Inception-
v3 architecture using primary field CFPs, resized to
587 × 587 pixels, as input. The model was developed
using data from 289,826 patients from EyePACS Inc.,
a teleretinal DR screening service in the United States.

The model produces a progression risk score per
eye as a number between 0 and 1, representing the
likelihood of an eye progressing in terms of DR sever-
ity within certain time windows. For this study, the
likelihood of progression from no or mild DR to
MOD+ within a 1-year window (i.e., at the subsequent
annual screen) was used. The model evaluates each eye
separately, and the maximum of the two per-eye scores
was used for prioritization ranking of patients for this
study.

Generation of Ranked Lists and Clinical
Workflow

CFPs from the baseline screening visit were input
into the model. A list of deidentified participant IDs,
ranked according to progression score output by the
model (from highest to lowest) were provided to the
Principal Investigator at each site.
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Patients were scheduled for their subsequent screen-
ing between September 2020 and January 2021 in
the proposed order determined by the model from
highest to lowest risk. Patients were provided with
specific appointment dates by each participating hospi-
tal. However, in cases where a patient was unable to
accept the given appointment, staff were instructed
to find the nearest acceptable appointment day while
ensuring that all participants will be screened within
12 to 14 months of their last DR screening, as
per the standard of care. Because patients did not
always show up on the appointed date, both the
scheduled appointment and the actual screening dates
were recorded to facilitate analysis. During the visit,
clinical staff obtained CFPs and metadata accord-
ing to routine screening protocol. Fundus images
were obtained using Topcon Maestro 3D OCT-1,
TopconTRCNW300, TopconTRCNW200 andNidek
AFC-210 cameras.

Grading

Thai retina specialists did the grading of fundus
images to obtain the baseline grades of patients with
diabetes in the baseline visit (there were two retina
specialists, each responsible for a separate set of hospi-
tals assigned to them). After this, fundus images and
metadata were transferred to coinvestigators at Google
Health via a secure Cloud-based server. A single retina
specialist from a pool of six U.S. board-certified retina
specialists graded each fundus image for DR and
diabetic macular edema to define the subsequent visit
grade. This would serve as the progression ground
truth for theDLmodel. Images were ordered randomly
and assigned randomly to blind the retina specialist to
the model scores. Analysis was performed to compare
the DR/diabetic macular edema grades assigned by
the retina specialist (progression ground truth) with
the ranked list to assess the model’s effectiveness in
prospectively prioritizing cases.

Statistical Analysis

Analysis was restricted to those patients with avail-
able hemoglobin A1c (HbA1c) results at baseline
(because this was a required part of data collection),
known follow-up dates, at least one image at the subse-
quent screen, and known MOD+ outcomes at the
subsequent visit. Patients who did not attend within
±60 days of their appointment date, or attended signif-
icantly earlier than expected (<150 days since the
baseline visit), were excluded from analysis. Images
deemed poor quality by the retina specialist were
also excluded from analysis. A CONSORT diagram

illustrating participant inclusions and exclusions is
presented in Supplementary Figure S1.

The analyses were performed by combining patients
across sites. The goal of the analysis was to compare the
ranking ability of different approaches to scheduling
subsequent screenings:

• Approach A: Baseline - ordered randomly
• Approach B: Baseline - all mildDR then all noDR,
random order within each group
• Approach C: All mild DR then all no DR, ranked
by decreasing HbA1c measurement at baseline
within each group
• Approach D: Model proposed order
• Approach E: Observed screening order

Whereas approach A is a simplified approximation
to current practice of following a standardized screen-
ing interval, approaches B and C represent clinically
informed ordering approaches based on available infor-
mation (DR grade and HbA1c). Approach D repre-
sents ourDLmodel, and approach E is the actual order
observed in this study. Further detail on how rankings
were combined across sites is provided in the Supple-
mentary Methods.

The primary outcome measure was the sensitivity
of the model, that is, its ability to rank patients by risk
of MOD+ within the first 50% of subsequent screens.
This was calculated by dividing the number of patients
with MOD+ in the first 50% of rankings by the total
number of patients with MOD+ at the subsequent
screen.

Approaches A and B were considered the baseline
approaches for comparison with approaches C, D,
and E. To test the superiority of the model’s sensi-
tivity, a permutation test (with 10,000 iterations) was
performed under the null hypothesis that the ranking
by the model is no different from random ranking
(approach D vs A). A second permutation test was
performed with the null hypothesis of ranking all mild
DR then all no DR, random order within each group
(approach D vs B). For each, alpha was set at 0.05. We
also report statistical tests comparing approach C and
approach E versus both stated null hypotheses in the
Supplementary Material.

In addition, we conducted a one-sided Mann–
Whitney U test for approaches B, C, D, and E to test
whether the ranks of the MOD+ progression positives
were earlier than the ranks of MOD+ progression
negatives.We report the results in Supplementary Table
S3.

We devised additional ranking approaches using
additional baseline variables, namely, age, duration
of diabetes, and insulin use. We first restricted this
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analysis to a subset of patients where all relevant
variables were present, yielding 1646 of 1757 patients.
For each baseline variable, we devised a ranking scheme
which used the baseline grades to rank the patients,
and within those two groups (no DR and mild DR),
we ranked the patients using the additional baseline
variable. Using the progression ground truth, these
rankings were then converted into a plot of fraction
screened versus sensitivity plots. For a fair comparison,
we also reran the previous approaches (A, B, C, D, and
E) on this subset of patients. The results are presented
in Supplementary Figure S3.

Results

A total of 3507 patients who attended their baseline
screening with no or mild DR were ranked by the
model at five screening sites (Supplementary Fig. S1).
Of these, 2365 patients attended a subsequent screen-
ing visit. The Chomthong site was excluded from the
analysis owing to an incompatible fundus camera used
at the subsequent visit and other data inconsistencies.
Of the four other sites, four patients who attended
unexpectedly soon after the baseline (within 150 days)
and four patients who did not attend within 60 days of
their appointment date were excluded from the analy-
sis. There were 109 patients who were missing HbA1c
data, and they were also excluded from the analysis. In
total, 3599 images from 1757 patients were analyzed
from four sites.

Demographics and characteristics of analysis-
eligible patients are shown in Table. In this cohort of
1757 patients, 63.5%were female. Themajority (99.5%)
had type 2 diabetes with a mean duration of 7.6 ± 5.9
years. The mean age was 58.7 ± 8.7 years. At baseline,
1578 patients (89.8%) had no DR and 179 (10.2%) had
mild DR. The mean time from baseline to subsequent
screen was 377.5± 37.3 days. At the subsequent screen,
52 (3.0%) patients progressed to MOD+ overall, most
of whom (n = 37 [71.1%]) attended the Phrao site. At
Rajavithi, no patients progressed to MOD+.

Proposed Versus Observed Order

The sites attempted to schedule patients in the order
proposed by the model (approach D as described in
Methods). Three sites (Rajavithi, San Patong, and
Khlong Luang) implemented the model proposed
order for the majority of patients (Fig. 1). Phrao is
a rural center where patients are transported to the
hospital in groups via a bus service from their respec-
tive locations.However, the bus schedules were nontriv-

ial to modify and resulted in an unanticipated inability
to adhere to the ranked order. Excluding this site, the
three remaining sites included 567 patients, of which 15
(2.6%) developed MOD+.

Rate of Progression

The annual transition probabilities between various
stages of DR has been studied as part of the assess-
ment of cost effectiveness of screening.17–20 A particu-
larly relevant study by Tung et al.18 conducted in Asian
patients reported annual transition probabilities that
imply a 19.4% and 1.4% rate of progression from no
DR and mild DR to MOD+, respectively. By compar-
ison, in our study, the observed numbers were 12.8%
and 1.8%, respectively (Table).

MOD+ Sensitivity Versus Fraction Screened

Excluding Phrao
Analysis of the three sites, after excluding Phrao,

demonstrates that the sensitivity of the observed
screened order (approachE) andmodel proposed order
(approach D) was 100.0% and 86.7%, respectively
(Fig. 2). Both of these rankings had superior sensitiv-
ity at 50% screened compared with baseline ranking
approaches A and B (P< 0.001) (Supplementary Table
S2). However, because the Phrao site contributed the
majority of patients overall as well as the majority of
patients that progressed toMOD+ (71% of all patients
who developed MOD+), the exclusion of this site
decreased dataset size substantially. This study limita-
tion is further addressed in the Discussion.

Including Phrao
Using the model proposed order, 90.4% of individ-

uals that developed MOD+ were successfully ranked
within the first 50% of subsequent screens (Fig. 3). This
was comparable with ranking by mild or no DR and
decreasing HbA1c (approach C) which had a sensi-
tivity of 86.5%. The sensitivity at 50% screened using
a random order (approach A) and ranking by mild
DR then no DR (approach B) was 50.0% and 68.9%,
respectively. The model proposed order, and rankings
by mild/no DR and HbA1c, had a superior sensitivity
to both baseline approaches (approachAand approach
B) (P < 0.001) (Supplementary Table S1). The percent-
age of patients graded as mild DR at the baseline
screen was 10.2%. At a fraction of 10.2% screened,
three ranking approaches (B, C, and D) demonstrated
an equal sensitivity of 44.2%. The observed screen-
ing order had a sensitivity of 21.1% at this fraction
screened. By including Phrao, the observed screening
order only achieved a MOD+ detection sensitivity of
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Table. Demographics and Characteristics of Analyzed Dataset

Study Site Khlong Luang Phrao Rajavithi San Patong Total Across 4 Sites

No. of patients 66 1190 55 446 1757
Age, years 60.2 ± 11.1 58.8 ± 8.30 55.9 ± 10.5 58.6 ± 9.01 58.7 ± 8.7
Sex, % female 56.1 68.5 60.0 51.6 63.5
Prediabetes 0 1 0 1 2
Prediabetes duration, years – 1 – 4 2.5 ± 2.
No. patients, type 1 diabetes 0 5 2 0 7
Type 1 duration, years – 5.4 ± 4.2 16.0 ± 11.3 – 8.4 ± 7.7
No. patients, type 2 diabetes 66 1184 53 445 1748
Type 2 duration, years 6.8 ± 4.9 7.2 ± 5.8 9.3 ± 7.6 8.7 ± 5.8 7.6 ± 5.9
HbA1c 7.8 ± 1.6 7.3 ± 1.8 7.9 ± 1.6 7.6 ± 1.7 7.4 ± 1.8
Insulin use
Yes 8 184 16 12 220
No 56 902 39 432 1429
Unknown 2 104 0 2 108

Smoking history
Yes 3 51 3 13 70
No 60 1137 52 433 1682
Unknown 3 2 0 0 5

Blood pressure, mean (mm Hg)
Systolic 131.1 128.7 133.0 132.0 129.8
Diastolic 77.1 73 76.9 77.4 74.4

Total cholesterol, mean (mg/dL) 181.0 182.8 170.6 165.3 177.9
No DR at baseline 45 (68.2) 1077 (90.5) 35 (63.6) 421 (94.4) 1578 (89.8)
Mild DR at baseline 21 (31.8) 113 (9.5) 20 (36.4) 25 (5.6) 179 (10.2)
Days between baseline and
subsequent visit

353.1 ± 29.4 383.5 ± 36.5 359.1 ± 42.9 367.2 ± 35.3 377.5 ± 37.3

Progressed to MOD+ at
subsequent visit

2 (3.0) 37 (3.1) 0 (0.0) 13 (2.9) 52 (3.0)

No DR progressed to MOD+ 0 (0.0) 18 (1.7) 0 (0.0) 11 (2.6) 29 (1.8)
Mild DR progressed to MOD+ 2 (9.5) 19 (16.8) 0 (0.0) 2 (8.0) 23 (12.8)

Progressed to severe NPDR or above 0 2 0 1 3
Progressed to PDR, number
of patients

0 1 0 1 2

HbA1c, hemoglobin A1c.; MOD+, moderate or worse DR; NPDR, nonproliferative DR; PDR, proliferative DR.
Values are mean ± standard deviation, number, or number (%).

50% at 50% fraction screened (Fig. 3), which was not
significantly better than random ordering (P = 0.49)
(Supplementary Table S1).

ComparisonWith Alternative Ranking
Approaches

We compared three alternative grading approaches
on a subset of patients where data was available
for relevant baseline variables. Plots can be seen in
Supplementary Figure S3. Our proposed approach still
outperforms all other approaches, with sensitivity at

50% screened equal to 91.8%. This is closely followed
by HbA1c approach (85.7%), followed by duration
of diabetes (74.7%), age (71.1%), insulin use (70.5%),
and baseline grade alone (68.2%). The random order
achieves 50%, and the observed screening order is close
behind at 46.9%.

Discussion

In this prospective study, we demonstrate the
capability of our DL model to prioritize diabetic

Downloaded from hwmaint.iovs.org on 04/23/2024



DR Risk Stratification Using Deep Learning TVST | December 2023 | Vol. 12 | No. 12 | Article 11 | 6

Figure 1. The actual screened order versus the model proposed order (according to the DL progression model), with each patient repre-
sented by a dot. Rajavithi, San Patong, and Khlong Luang closely follow the model proposed order, illustrated by a monotonic increasing
relationship between the two axes. Phrao followed the order in numerous discrete batches owing to scheduling issues.

patients for a subsequent screening visit, based on
their personalized risk of DR progression. Our evalu-
ation assessed the model’s clinical usefulness during
COVID-19 recovery efforts in Thailand, with the
objective of mitigating delays in scheduling follow-up
screening appointments for those at higher risk. The
DL model was implemented at sites with high patient
volumes, where prioritization of patients based on DR
risk could potentially lead to a more efficient allocation
of resources and ensure that patients with a higher risk
of DR progression receive timely eye clinic visits for
appropriate management. Furthermore, our approach
directly tackles the problem of optimizing screening
intervals by risk stratifying the two largest groups of

patients: those without any DR and those with mild
DR.

The proposed screening order determined by the
DL model (approach D) showed a significantly higher
sensitivity (defined as fraction of patients who were
MOD+ at second screen who were screened in the first
50% of subsequent screens) compared with baseline
methods (approach A and B). The observed screen-
ing order (approach E) was highly consistent with the
model proposed order at three of the four screening
sites, with the exception of the rural Phrao site. At the
three consistent-ordering sites (i.e., excluding Phrao),
our model successfully provided a more accurate
personalized risk assessment to optimize screening
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Figure 2. Sensitivity versus fraction screened for Rajavithi, San Patong, and Khlong Luang in aggregate, after excluding Phrao (see Results).
The green line represents the model proposed order (approach D), the red line represents the actual observed order (approach E), the blue
line represents in order of mild DR and then no DR (approach B), the orange line represents in order of mild/no DR and decreasing HbA1c
within each group (approach C), and the black line represents a random order (approach A).

intervals. As a result, a greater proportion of patients at
higher risk were scheduled for their subsequent annual
visit prior to those with lower risk, compared with
the baseline methods, ensuring overall earlier detec-
tion of progression to MOD+. However, owing to few
MOD+ cases at these three sites, there was a lack of
power to measure a significant improvement in sensi-
tivity compared with the baseline approaches. Includ-
ing Phrao in the aggregate analysis, our results showed
that simply ordering patients by their baseline grade
(mild DR followed by no DR) for the subsequent visit
identified 44.3% of those that progressed to MOD+ at
10.2% screened. Although the model proposed order
and rankings by grade and HbA1c also demonstrated
the same sensitivity at 10.2% screened, both quickly
outperformed the baseline approaches as the fraction
screened increased, suggesting that both the DL model
and HbA1c were good signals for prioritizing patients
for subsequent screenings. A notable advantage of the

DL model compared with rankings by baseline grade
and HbA1c is that it solely requires CFPs (which are
already taken for DR screening purposes) as an input,
making it a more practical solution for implementation
if HbA1c values are not already available. However, in
settings where the DL system cannot be deployed, or
where HbA1c monitoring is routine, it may be practi-
cal and feasible to prioritize subsequent screening visits
based on baseline grade and decreasing HbA1c levels.

This study provides data not just on the DLmodel’s
performance, but also real-world insights on implemen-
tation of the solution. Three of the four evaluated sites
successfully implemented theDLmodel into real-world
practice by following the model proposed order for
the majority of patients. However, several real-world
deployment challenges were encountered during the
study. For instance, the attendance order was disrupted
by patients whomissed their appointment and required
rescheduling during the follow-up period.Additionally,
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Figure 3. Sensitivity versus fraction screened for Rajavithi, San Patong, Khlong Luang, and Phrao in aggregate (see Results). The green line
represents the model proposed order (approach D), the red line represents the actual observed order (approach E), the blue line represents
in order ofmild DR and then noDR (approach B), the orange line represents in order ofmild/no DR and decreasing HbA1cwithin each group
(approach C), and the black line represents a random order (approach A). Each accompanying line for black and blue represents one run
of the randomization (which is applicable when there are ties, such as between mild DR patients or between no DR patients). To show the
variability that might occur, we plot 100 accompanying lines with a faint color around the main solid line representing the average value.

patients in certain rural areas traveled to the screen-
ing site in groups using prearranged transport, making
it challenging to adhere to the model proposed order.
This was particularly the case at the Phrao site, which
had the greatest number of cases overall and also most
of the cases that progressed to MOD+ at the subse-
quent screen. Because Phrao comprised themajority of
patients andMOD+, this factor substantially impacted
the sensitivity results using the observed order. Never-
theless, our experience demonstrates the complexities
that impact the real-world use of artificial intelligence
in health care and highlights the importance of careful
evaluation, design, and implementation of systems
for improved artificial intelligence delivery.21,22 Imple-
mentation science frameworks such as reach, effec-
tiveness, adoption, implementation, and maintenance
(RE-AIM) are useful in identifying areas to assess

implementation and subsequent dissemination efforts
for artificial intelligence in real-world practice.23

This work aims to personalize follow-ups accord-
ing to the patient’s risk of progression, which may
result in some patients being seen sooner or later
than currently recommended guidelines. International
guidelines recommend annual DR screening for those
without DR or with mild DR24,25; however, the liter-
ature suggests that patients without DR could safely
undergo screening every 24 months.26 Although longer
intervals may be sufficient for most patients, a system-
atic review by Sabanayagam et al.27 found that the
annual progression from mild to proliferative DR
ranged from 0% to 1.5%. Our DL model aims to
identify this small proportion of patients who will
progress and require more frequent follow-up and may
benefit from being prioritized for subsequent screens
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or being seen sooner than 12 months. This approach
has the potential to further decrease the burden of
screening on patients and the screening system, and
improve efficiency especially in resource-constrained
settings.

Limitations of this study include DR grading
variability, particularly for subtle retinal changes such
as microaneurysms.28 Thus, it is possible that a high
predicted risk score output by the model may actually
indicate existing DR, rather than predicting the future
progression of DR. To address this possibility, the
concurrent use of a DR grading model with this risk
stratification DL progression model could be investi-
gated in future work. Furthermore, images from the
baseline and subsequent visits were graded by different
retina specialists (the same set of graderswere not avail-
able for the latter study). Because there can be inter-
and intra-rater variability in the assessments, adjudi-
cation is generally considered the preferred approach
to ensure the accuracy and consistency of the final
grading result.28 It is also important to note that the
DR grades could differ if patients were seen using the
proposed order (i.e., the DR grade may differ if screen-
ing happened at a different point in time). This means
that sensitivity comparisons of the model proposed
order with the actual screened order are approxima-
tions. This point is particularly relevant for the San
Patong site, where subsequent visits were conducted
over a period of 4 months. Another limitation is
that, given resource constraints on the ground and
to limit the burden of data collection by nurses, we
were unable to gather data on patient ethnicity, which
could have contributed to a better understanding of
the patient population and its potential impact on DR
progression. Last, because the number of patients who
progressed to MOD+ are quite low in our study, we
could only compute rough estimates of annual reported
DR progression rates.

In conclusion, our study demonstrates the ability of
a DL model to help schedule follow-up visits for the
two largest subgroups of DR patients based on their
risk of progression. To our knowledge, this is the first
real-world deployment of a DR progression model in
a health care setting. Our findings suggest that such
a model could enable earlier identification and treat-
ment of patients at greatest risk of progression before
irreversible vision loss occurs. At the same time, it
could decrease the burden of screening attendance for
lower risk patients by extending their follow-up inter-
vals. However, additional studies are needed to further
validate theDLmodel with a robust dataset for analysis
and assess its scalability in screening programs. Further
research is needed to evaluate the long-term impact of
adapting screening intervals to reflect personalized risk

profiles on cost-effectiveness, clinical management, and
patient outcomes.
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