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Purpose: The purpose of this study was to assess the current use and reliability of artifi-
cial intelligence (AI)-based algorithms for analyzing cataract surgery videos.

Methods:A systematic review of the literature about intra-operative analysis of cataract
surgery videos with machine learning techniques was performed. Cataract diagnosis
and detection algorithmswere excluded. Resulting algorithmswere compared, descrip-
tively analyzed, and metrics summarized or visually reported. The reproducibility and
reliability of the methods and results were assessed using a modified version of the
Medical Image Computing and Computer-Assisted (MICCAI) checklist.

Results: Thirty-eight of the 550 screened studies were included, 20 addressed the
challenge of instrument detection or tracking, 9 focused on phase discrimination, and
8 predicted skill and complications. Instrument detection achieves an area under the
receiver operator characteristic curve (ROC AUC) between 0.976 and 0.998, instrument
tracking an mAP between 0.685 and 0.929, phase recognition an ROC AUC between
0.773 and 0.990, and complications or surgical skill performs with an ROC AUC between
0.570 and 0.970.

Conclusions: The studies showed a wide variation in quality and pose a challenge
regarding replication due to a small number of public datasets (none for manual small
incision cataract surgery) and seldom published source code. There is no standard for
reported outcome metrics and validation of the models on external datasets is rare
making comparisons difficult. The data suggests that tracking of instruments and phase
detection work well but surgical skill and complication recognition remains a challenge
for deep learning.

Translational Relevance: This overview of cataract surgery analysis with AI models
provides translational value for improving training of the clinician by identifying
successes and challenges.

Introduction

Cataract surgeries are the most frequently
performed procedures worldwide and are often
digitally recorded.1–3 The availability of video

material and the standardized nature of the surgery
presents a huge opportunity for automatic analy-
sis for quality management, teaching, and train-
ing. Recent advances in artificial intelligence (AI),
especially deep learning (DL), further enable this
automation.
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The DL algorithms have demonstrated unparal-
leled potential in revolutionizing various aspects of
cataract surgery, from pre-operative diagnostics and
planning to intra-operative guidance and postoperative
care.4 The integration of AI in cataract surgery holds
the promise of improved surgical precision, enhanced
patient outcomes, and increased efficiency for health-
care practitioners. One example of this in general
surgery is the work by Pierre Jannin et al. demonstrat-
ing the usefulness of AI for skills assessment by predict-
ing values on an established skill metric for surgeon
training programs.5

This review article aims to provide a comprehen-
sive assessment of the current state of DL algorithms
in analyzing cataract surgeries. It groups available
algorithms according to the task that they solve, and
compares them with respect to the reported quality
of results. We also investigate the reproducibility and
reliability of the prior study results due to the known
problems in replication of DL algorithms.6

Treatment for cataract is surgical and a variety
of surgical techniques are available for this, includ-
ing phacoemulsification (PE), manual small-incision
cataract surgery (MSICS), and femto laser-assisted
cataract surgery (FLACS).7 Hence, the type of cataract
surgery needs to be considered in addition to a
number of additional parameters in any of the avail-
able datasets for training of DL architectures.

The earliest publications started out with the recog-
nition of coarse phases in cataract surgeries and detec-
tion of a limited number of instruments. Current
techniques offer finer recognition of object classes,
their position, and more sophisticated stages. Thus,
besides providing a narrative overview, we will criti-
cally examine themain challenges and limitations faced
by the presented approaches and their data sources
and discuss potential avenues for future research to
overcome these hurdles.

Methodology

The overall methodology of this review is based on
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) and the Cochrane
recommendations for systematic reviews.8,9

Eligibility Criteria for Considering Studies for
This Review

Search Methods for Identifying Studies
To search relevant studies, we used the search

engines available on PubMed, Clarivate Web of

Science, Elicit.org, and dblp computer science bibli-
ography, encompassing the following databases
that include the most important journals in the
fields of medical and computer science research:
MEDLINE, MEDLINE In-Process, Science Citation
Index Expanded (SCIE), Conference Proceedings
Citation Index - Science, Book Citation Index -
Science, Emerging Sources Citation Index (ESCI),
Scientific Electronic Library Online Citation Index,
and arXiv.org for published studies up to July 2023.

Detailed information about the search terms and
formulas can be found in Supplementary Table S1.
The initial search across the 4 search engines yielded
550 articles. After screening all paper abstracts for
eligibility, 49 references were included in the full-
text review (Fig. 1). Study authors were contacted to
provide additional data if required. Reference lists of
manuscripts reviewed in full were hand searched for
additional relevant articles.

Study Selection
For the inclusion in our review, we only consid-

ered algorithms that were evaluated on cataract extrac-
tion surgery datasets with quantitative performance
metrics. Datasets must comprise of real surgery videos,
and not on surgeries performed on plastic models or
be artificially generated. We did not consider studies
published more than 10 years ago due to the relative
recency of successful computer vision solutions in
the field of ophthalmology. Additionally, a huge body
of publications utilizes convolution neural networks
to diagnose the presence and severity of cataract in
patient populations. We excluded this specific applica-
tion for our review because it is covered thoroughly in
prior work4,10 and instead focused our review on the
surgery video analysis and postoperative quality insur-
ance. The final set of included papers covers the detec-
tion, segmentation, and tracking for surgical instru-
ments, the recognition of surgical phases, and the
assessment of surgical skill and risk for complications.

In case of any uncertainty regarding the in- or
exclusion of a specific research paper, either a senior
computer scientist (author T.S.) or ophthalmologist
(author M.W.W.M.) were consulted.

Data Collection and Quality Assessment

After the initial screening and eligibility assessment,
the following characteristics of the included studies
were extracted:
• Study design, type of cataract surgery, type

of machine learning algorithm and neural network
(if applicable), reported measurement metrics of
the algorithm, recording equipment, dataset details,
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Figure 1. Flowchart based on PRISMA 2020 diagram for new systematic reviews depicting the literature search on algorithms for analysis
of cataract extraction surgery.9

which phases, instruments and/or skill/complication
types were tracked, validity, reliability, limitations, key
conclusions of the authors, and other relevant informa-
tion.

One independent assessor (author S.M.) used a
modified version of the International Conference on
Medical Image Computing and Computer-Assisted
Interventions (MICCAI) Reproducibility Checklist to
assess the reproducibility of the studies (see Supple-
mentary Table S1 for details). Wintergerst et al.
raised the issue of replicating results from automated
ophthalmic image analysis in independently collected
data and we aim to assess this risk in cataract surgery
using this list.6 The checklist was adapted to the
requirements of cataract surgery analysis by includ-
ing the following: description of the mathematical
setting, algorithm and model, characteristics of the
study cohort making up the dataset, description of
data collection and parameters of used devices or
tools, publication of the dataset, pre-trained models

and codebase, reporting of hyperparameters and their
selection procedure, details on hardware used and
its computing performance, and whether there was a
statistical analysis of results.

Data Synthesis and Analysis

Algorithms were categorized based on which
aspect(s) of the surgery they analyzed (instruments,
phases, and/or surgical skills), and they were further
subdivided on detection, segmentation, and/or track-
ing. Quality of the algorithms was assessed by compar-
ison of reported metrics (accuracy, sensitivity, speci-
ficity, precision, area under the receiver operating
characteristic curve [ROC AUC], area under the
precision-recall curve, and the F1 or Dice score), and
quality of the validation procedure (dataset split, use
of k-fold cross validation, and evaluation on exter-
nal datasets). When possible, metrics in a category
of surgery analysis (e.g. instrument detection) were
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compared and displayed in the form of boxplots.
Correlation between the most reported performance
metric (e.g. ROC AUC) per category and dataset sizes
were calculated with the Spearman’s rank correla-
tion coefficient (denoted rs). Significance probabilities
were then determined with a permutation test on this
statistic.

Results

We identified a total of 38 algorithms for automated
analysis of cataract extraction surgery (see Fig. 1).
These include 20 publications about the detection (12),
segmentation or tracking (8) of surgical tools, 17 about
the recognition of the current surgical phase, and 9
about the assessment of surgical skills (6), and compli-
cation risk (3). Some of these publications overlap
with each other, for example, algorithms that use the
presence of instruments to predict the current phase of
the surgery (overlap shown in Fig. 2). The algorithm
characteristics are summarized in Tables 1–4.

For each category, we briefly discuss publications
with interesting aspects or insights.

Public Datasets

For training the DL architectures, surgical videos
were used that were either recorded in a local, cooper-
ating hospital or part of a public dataset. The most

Figure 2. Overview of the different cataract surgery analysis
algorithms.

comprehensive open dataset is the CATARACTS
Grand Challenge Dataset. It consists of 50 videos
of cataract surgeries performed at the Brest Univer-
sity Hospital in 2015.11 Patients had a mean age of
61 years and the surgeries lasted for an average of
10 minutes and 56 seconds, were performed by 3
specialists and recorded in a resolution of 1920 ×
1080 through an OPMI Lumera T microscope. The
presence of the following 21 instruments is labeled in
the dataset: biomarker, Charleux cannula, hydrodis-
section cannula, Rycroft cannula, viscoelastic cannula,
cotton, capsulorhexis cystotome, Bonn forceps, capsu-
lorhexis forceps, Troutman forceps, needle holder,
irrigation/aspiration handpiece, phacoemulsifier
handpiece, vitrectomy handpiece, implant injector,
primary incision knife, secondary incision knife,
micromanipulator, suture needle, Mendez ring, and
Vannas scissors (Fig. 3).

The 50 videos are split into training and test datasets
with 25 videos each.11

On top of this grand challenge data, the Cataract
Dataset for Image Segmentation (CaDis) segmenta-
tion is available and consists of 4670 images sampled
randomly from the 25 videos in CATARACTS’ train-
ing set. Each pixel in each image is labeled with its
respective instrument or anatomic class from a set of
36 identified classes (see Fig. 3).

Another dataset is the 101-Cataracts video collec-
tion which consists of 101 cataract surgeries performed
by 4 different surgeons over a period of 9 months in the
Klinikum Klagenfurt in Austria, with annotations for
different surgery phases.12 The four operating surgeons
were grouped into two different levels of experience
based on position and hours operated. The total length
of all videos amounts to 14 hours, 2 minutes, and 5
seconds (1,263,116 frames) with a resolution of 720 ×
540 pixels.

All described datasets in the study selection consists
of recordings of the phacoemulsification procedure but
other approaches like the MSICS are not considered.

Instrument Analysis

This subset of algorithms aims to either detect the
presence of surgical instruments (detection) or quanti-
tatively track their position (tracking) during the proce-
dure.

Instrument Detection
Of the 19 instrument-related publications, 12 specif-

ically address detection of surgical instruments. Here,
the main goal of the algorithm is to recognize for
every frame or time step in a recording the presence
or absence of a prespecified list of surgical instruments
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A B

Figure 3. Dataset overview with (A) detection labels from CATARACTS grand challenge and (B) segmentation of the CaDis subset.11

(see Fig. 3). Various performancemetrics were reported
to assess the algorithms with the most common being
ROC AUC. Overall, a high performance can be seen
ranging from 0.976 to 0.998.13–21 Sensitivity and speci-
ficity are only reported in 5 studies and range from
0.797 to 0.959 and from 0.820 to 0.997, respec-
tively.13–15,20,22 The dataset sizes of these detection
studies range between 25 and 209 videos with a median
of 50 videos.18,21 There was no statistically significant
Spearman’s correlation between the size of the dataset
and the performance metric ROC AUC with a coeffi-
cient rs of 0.16 and a P value of 0.75.

The majority of proposed algorithms (n = 8)
used a setup that consists of a convolutional neural
network (CNN) to extract image features from the
ingested video frames and a recurrent neural network
(RNN) to interpret these features across time frames
to detect the presence of instruments. For the first
part, various architectures were explored (such as
ResNet-52, DenseNet, Inception v4, VGG16, and
NASNet), and for the second step, variations of the
popular long short-term memory (LSTM) network
were used, achieving overall similar results. The
remaining algorithms (2) designed custom networks
that fused the features inside the CNN, and used non-
neural network-basedmachine learning approaches for
the complete (n = 1) or part of the prediction process
(n = 1).20,21 One of the research papers detected the
presence and removal of instruments from the instru-
ment table which could be useful to verify the presence
during the surgery video.16

Specifically, we want to highlight the paper by
Natalia Sokolova et al., where networkswere trained on
one dataset and then evaluated on another.22 This led to
amassive degradation in sensitivity from 0.834 down to
0.285. The authors theorize that this could be due to the

fact that the CATARACTS Grand Challenge dataset
has an unusually high quality which does not general-
ize well to other circumstances.

Instrument Tracking
Among the eight papers in this section, two use a

full semantic segmentation approach for the tracking
of surgical instruments, wherein each pixel in a given
image frame is classified to a certain class. They use the
popular U-Net architecture and a CNN-based feature
extractor in combination with a mask recurrent neural
network. Fox et al.23 returns a segmentation class for
each image pixel, whereas Pissas et al.24 returns masks
for the different classes.

The remaining instrument tracking papers propose
various technical approaches, the most common being
the “You only look once” (YOLO) network architec-
ture that is able to localize trained classes in various
sizes after only ingesting an inference image once. It
outputs bounding boxes for the recognized classes with
position and size information.25–30

For the evaluation of these approaches, intersec-
tion over union (IoU) and mean average precision
(mAP), which is calculated from a cutoff value of
the former, were used. Overall, there is a moderate
success for this application with an mAP that ranges
from 0.685 to 0.92923,25,27,30 and an IoU from 0.820
to 0.956.24,27,29,46 One author reports an impressive
mean absolute error (MASRE) between prediction and
ground truth of 21.26 μm while using a combination
of an attitude and heading reference system (AHRS)
and a CNN architecture.28 The approaches vary widely
in dataset size with two examples only using 5 videos,
one 300 videos, and, overall, a median video count of
38.5.28–30 Also in this scenario, therewas no statistically
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Figure 4. The 101-Cataracts dataset overview showing the different phases in cataract surgery.12

significant correlation between the outcome metric
mAP and the dataset size (rs = 0.00, P = 1.00).

Surgical Phase Recognition

Seventeen publications address the problem of
matching video segments with their respective surgical
phases in cataract surgery. Examples of surgical phases
in a publicly available dataset can be seen in Figure 4.
From these, nine papers report an ROC AUC metric
between 0.773 and 0.99014,31–38 and 11 report an
accuracy between 0.645 and 0.978.14,18,27,36,37,39–43,47
The results with lower accuracy or ROCAUC are older
studies that construct hand-crafted features and feed
them into machine learning algorithms like Support
Vector Machines or Nearest-Neighbor matching.

The more recent publications utilize state-of-the-art
neural networks and construct various CNN feature
extractors in combination with a recurrent neural
network for integration across time. Here, the most
common type is the previously mentioned LSTM
to predict a fitting surgical phase for every video
frame. The minimal amount of videos utilized by these
approaches is 10, the maximum amount is 303, the
median corresponds to 50 videos, and there was no
significant correlation between ROC AUC and the
number of training videos (rs = −0.07, P = 0.84).33,44

Interestingly, Yu et al. fed only manually
curated instrument labels corresponding to the
current timestep as input data into an RNN and
achieved high results with an accuracy, sensitiv-
ity, and specificity of 0.959, 0.797, and 0.977,
respectively.14

Surgical Skill Assessment and Complication
Recognition

The remaining nine studies go beyond the typical
computer vision application of instrument detection
and surgical phase segmentation and try to extract
clinically more relevant information about surgi-
cal performance and complication risk. Overall,
they achieve an ROC AUC between 0.570 and
0.970.21,26,29,45 Dataset sizes vary again greatly
between 10 and 302 videos with an median of 99
videos.29,33 The size and ROC AUC metric have no
statistically significant correlation (rs = −0.36, P =
0.75).

The simplest form of surgical skill determination
(4 of the available papers) trained a binary classifier
on differentiating between a novice and expert surgeon
using the operating recordings as input, and achieved
an accuracy between 0.578 and 0.848. To highlight this
difference, Hitoshi Tabuchi et al. predicted a contin-
uous risk score that significantly (P < 0.01) differed
between experienced and novice surgeons.48

Gu et al. combines tracking information with
a surgical guidance system to calculate trajectories
with only a few pixels of error.49 Another approach
estimated items specific for phacoemulsification from
the ICO-Ophthalmology Surgical Competency Assess-
ment Rubric (ICO-OSCAR:phaco) utilizing proper-
ties calculated from the instrument tracking procedure.
For example, Morita et al. uses the tooltip data to
predict the handling of the rhexis formation during the
surgery.29 Similarly, Tae Soo Kim et al. estimates ICO-
OSCAR:phaco items by predicting instrument trajec-
tory velocities with a temporal convolutional neural
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network (TCN) achieving an accuracy of 0.728 and an
ROC AUC of 0.773.26 The scores on the rubric can be
translated into a simpler novice/expert differentiation
as in the previous examples.

Specific complications can be recognized by focus-
ing on certain characteristics of the surgery.29,42 In
the LensID paper, the implanted lens is recognized by
a segmentation network, and location plus deforma-
tion parameters is calculated to estimate lens instability
which is hypothesized to lead to dislocation after the
surgery.42 Shoji Morita et al. trained a CNN on differ-
ent adverse outcomes by accumulating the individ-
ual frame risk in a moving average.28 They were able
to predict problems during the surgery even before a
human surgeon with an accuracy of 0.902 and an ROC
AUC of 0.970.

Discussion

Across all studies, we observed significant improve-
ments in various performance metrics in DL methods
compared to classical machine learning techniques like
Random Forest, Support Vector Machines, or Nearest
Neighbor Classifiers.30,36,40 Especially for the tasks
of instrument detection, tracking, and surgical phase
recognition, DL approaches achieve results of high
quality consistently across multiple datasets.

Availability of Data

Exploration of the available datasets underscored
a limitation in the availability of public datasets
for cataract extraction surgery. Overall, the research
community needs access to more public datasets.
Moreover, the two existing sources only include record-
ings of the phacoemulsification procedure usually
performed in high-income countries. MSICS is still the
surgery of choice in high volume cataract settings in
low- andmiddle-income countries (LMICs).50 Because
of the lacking data, not even a single of the 38 studies
is focused onMSICS. This lack of datasets and studies
poses a challenge for algorithms development tailored
to MSICS scenarios where performance evaluation
and recognition is especially important due to higher
chances of complications.51 Current phacoemulsifi-
cation datasets and trained models cannot be used
without translation on MSICS data because the
surgery differs in phases, utilized instruments, and
risk for certain complications. Further, it is impor-
tant to keep in mind that LMICs often do not have
access to high-end hardware. This could lead to train-
ing data of lower quality and higher importance of

selecting efficient neural network architectures. How
well current data and architectures can be applied in
LMICs should be investigated with anMSCIS dataset.
Therefore, releasing a public MSICS dataset of suffi-
cient size in the future would make it possible to
address these problems and publishing a programming
competition like the CATARACTs challenge, which
could contribute to finding a generalizable and well-
performing DL architecture.

Many studies use in-house datasets from collaborat-
ing hospitals that are not public, but, if made public,
would help in training better algorithms and validat-
ing new approaches. Additionally, only 2 out of 37
studies (5.4%) have published their codebase or trained
models which makes replication difficult. However, 30
studies (81.1%) at least support reproduction by report-
ing their hyperparameters.

CommonMetrics and Validation

Comparison of differences in the performance of
cataract surgery analysis algorithms is currently limited
by the fact that it is not reported with standardized
metrics. An international expert consortium recently
highlighted the need to choose the right metric for a
specific problem in the biomedical realm to not over- or
underestimate an algorithm.52 In our review, authors
often report only one or two metrics, even though
models can be better assessed and compared if at
least the most common machine learning metrics are
present. Following the guidelines from the consortium,
we would recommend including the ROC AUC, preci-
sion (positive predictive value), recall (sensitivity), and
accuracy metrics for classification tasks (instrument
detection, phase recognition, surgical skill, and compli-
cation determination). Whenever possible, additional
metrics like sensitivity and specificity could be reported
to make comparisons easier and improve trust in the
results. For tracking and segmentation algorithms, we
would recommend the usage of mAP, IoU, and Dice
Similarity Coefficient (DSC) metrics.

Our confidence in the generalizability of the major-
ity of described studies is reduced by the fact that only
9 out of 38 studies (23.7%) evaluated the algorithm
on an additional, external dataset. In regard to valida-
tion methods, 10 authors (26.3%) use cross-validation
or leave-one-out validation and the rest use a simple
training, validation, and test split. Statistical signifi-
cance is only investigated in 14 studies (36.8%) and only
8 studies (21.1%) achieved a P value < 0.05. Figure 5
highlights how this variability in validation methods
and datasets leads to a broad spread of performance
metric results.
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A B

Figure 5. Spread of the results. Boxplots of the area (A) under the receiver operator characteristic curve (ROC AUC) for surgical phase,
instrument detection, and surgical skill or risk assessment, and (B) instrument tracking results reported in mean average precision (mAP).

Furthermore, there is a huge variability in the
number of recognized instruments and phases in the
studies that do not use one of the public datasets.
Similarly, for recognized complications during proce-
dures or surrogates of surgical skill, there is no consen-
sus. Establishing a common list of instruments, phases,
and evaluation metrics is pivotal for advancing the
field and promoting the reproducibility of results. In
addition, patient characteristics of datasets should be
included to identify potential confounders that could
influence predictions.

Although it is to be expected that learning-based
methods trained on larger and more representative
data will deliver better results, our correlation analy-
sis between performance of models and dataset sizes
did not yield any statistically significant relationship.
In particular, several studies based on small datasets
report high accuracy.

Therefore, we are not able to recommend a minimal
number of videos that are required for training DL
approaches. In general, that number should depend on
several factors, including the exact task, homogeneity,
resolution, and quality of the videos, aswell as algorith-
mic approach. In particular, the increasing availabil-
ity of foundation models should help to reduce the
required amount of training data.53 However, it is
known that studies that evaluate methods on small
test sets often overestimate their performance, so we
emphasize the relevance of evaluating methods on
sufficiently large test datasets.54

Another significant challenge highlighted by
Sokolova et al. is the difficulty in transferring trained
algorithms between datasets and acquisition setups.
They trained an instrument detection network on one
dataset and then tested it on a second one leading
to massive performance losses.22 The variance in

video recording setup, surgical instruments, phases,
and complications in different data sources probably
contributes to this problem. Developing algorithms
that are able to generalize well is imperative for clinical
applications. In addition, to even detect this problem,
proposed models have to be tested on external data
sources.

Conclusions and Outlook

One notable DL design that is missing from the
observed studies are vision transformers that have
been introduced in 2020 and improved performance
in computer vision applications.55 Kiyasseh et al.
demonstrated that vision transformers make it possi-
ble to recognize surgical phases and gestures with
high accuracy and good generalizability across differ-
ent datasets.56,57 In the future, it would be interest-
ing to explore this approach in cataract extraction to
overcome the issue of generalizability.

We believe that the potential of automated video
analysis in surgical teaching and training is promising.
Algorithms could aid surgical education by providing
near real-time feedback to improve surgical techniques.
Collaborative efforts to curate comprehensive datasets
and develop standardized models have the potential to
speed up advancements in this field.

In conclusion, our study highlights the ability
of DL models to estimate surgical phase, track or
detect instruments, and recognize complications. This
promising outlook is somewhat lessened by the general
lack of publicly available data, public code, and
pretrained models (especially for a comprehensive
MSICS dataset), and the need for standardized evalu-
ation protocols. Addressing these challenges and lever-
aging emerging technologies like vision transform-
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ers will undoubtedly shape the future landscape of
cataract surgery video analysis and hold the potential
to significantly enhance surgical training and surgical
outcomes.
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